Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle

Thumbnail Image
Date
2008-09
Authors
Sun, Youbin
Wu, Feng
Clemens, Steven C.
Oppo, Delia W.
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
South China Sea
Major and trace elements
Elemental ratios
East Asian monsoon
Abstract
Sediments of the upper 28.2 meters of Ocean Drilling Program (ODP) Site 1145 from the northern South China Sea (SCS) were analyzed for their geochemical composition. Most of the major and trace elements exhibit significant fluctuations at glacial-interglacial scales, implying a close relation with regional and global climate change. Al-normalized elemental ratios can be subdivided into three principal components (PC). PC1 (e.g., Ca/Al, Ba/Al, Sr/Al) displays significant glacial-interglacial variation and is related to paleoproductivity in the northern SCS. PC2 (e.g., K/Al, Mg/Al, Rb/Al) is associated with the degree of chemical weathering in the source regions and shows little glacial-interglacial variation. PC3 (e.g., Ti/Al, Zr/Al) reflects the relative contribution of coarse- and fine-grained materials in the terrigenous components of the SCS sediments, likely associated with changes in sea level and monsoon-induced fluvial input. Spectral analyses indicate that paleoproductivity (i.e., Ba/Al) in the South China Sea lags Hulu/Sanbao speleothem δ18O record (a indicator of annual average meteoric precipitation) by 102° and Indian summer monsoon (multi-proxy stack) by 23° at the precession band, indicating a close relationship with the Indian summer monsoon. However, the chemical weathering degree in the source area (PC2) is not sensitive to monsoon-related changes at the precession band during the last climatic cycle.
Description
Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 257 (2008): 240-246, doi:10.1016/j.chemgeo.2008.10.002.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name