The euphotic zone under Arctic Ocean sea ice : vertical extents and seasonal trends

Thumbnail Image
Date
2017-03-26
Authors
Laney, Samuel R.
Krishfield, Richard A.
Toole, John M.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1002/lno.10543
Replaced By
Keywords
Abstract
Eight Ice-Tethered Profilers were deployed in the Arctic Ocean between 2011 and 2013 to measure vertical distributions of photosynthetically active radiation (PAR) and other bio-optical properties in ice-covered water columns, multiple times a day over periods of up to a year. With the radiometers used on these profilers, PAR could be measured to depths of only ∼20–40 m in the central Arctic in late summer under sea ice ∼1 m thick. At lower latitudes in the Beaufort Gyre, late summer PAR was measurable under ice to depths exceeding 125 m. The maximum depths of measurable PAR followed seasonal trends in insolation, with isolumes shoaling in the fall as solar elevation decreased and deepening in spring and early summer after insolation resumed and sea ice diminished. PAR intensities were often anomalously low above 20 m, likely due to a shading effect associated with local horizontal heterogeneity in light transmittance by the overlying sea ice. A model was developed to parameterize these complex vertical PAR distributions to improve estimates of the water column diffuse attenuation coefficient and other related parameters. Such a model is necessary to separate the effect of surface ice heterogeneity on under-ice PAR profiles from that of the water column itself, so that euphotic zone depth in ice-covered water columns can be computed using canonical metrics such as the 1% light level. Water column diffuse attenuation coefficients derived from such autonomously-collected PAR profile data, using this model, agreed favorably with values determined manually in complementary studies.
Description
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 62 (2017): 1910–1934, doi:10.1002/lno.10543.
Embargo Date
Citation
Limnology and Oceanography 62 (2017): 1910–1934
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International