The five stable noble gases are sensitive unambiguous tracers of glacial meltwater

Alternative Title
Date Created
Location
DOI
10.1002/2013GL058804
Related Materials
Replaces
Replaced By
Keywords
Tracers
Noble gases
Meltwater
Glacier
Glacial ice
Latent heat
Abstract
The five inert noble gases—He, Ne, Ar, Kr, and Xe—exhibit a unique dissolved gas saturation pattern resulting from the formation and addition of glacial meltwater to seawater. He and Ne become oversaturated, and Ar, Kr, and Xe become undersaturated to varying percentages. For example, addition of 10‰ glacial meltwater to seawater results in a saturation anomaly of ΔHe = 12.8%, ΔNe = 8.9%, ΔAr = −0.5%, ΔKr = −2.2%, and ΔXe = −3.3%. This pattern in noble gas saturation reflects a unique meltwater signature that is distinct from the other major physical processes that modify the gas concentration and saturation, namely, seasonal changes in temperature at the ocean surface and bubble mediated gas exchange. We use Optimum Multiparameter analysis to illustrate how all five noble gases can help distinguish glacial meltwater from wind-driven bubble injection, making them a potentially valuable suite of tracers for glacial melt and its concentration in the deep waters of the world ocean.
Description
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 2835–2841, doi:10.1002/2013GL058804.
Embargo Date
Citation
Geophysical Research Letters 41 (2014): 2835–2841
Cruises
Cruise ID
Cruise DOI
Vessel Name