Crustal magmatic system beneath the east pacific rise (8 degrees 20 to 10 degrees 10N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges

Alternative Title
Date Created
Location
DOI
10.1029/2018GC007590
Related Materials
Replaces
Replaced By
Keywords
Mid‐ocean ridges
Multichannel seismic data
Tectonomagmatic segmentation
Melt transport
East Pacific Rise
Abstract
Detailed images of the midcrustal magmatic system beneath the East Pacific Rise (8°20′–10°10′N) are obtained from 2‐D and 3‐D‐swath processing of along axis seismic data and are used to characterize properties of the axial crust, cross‐axis variations, and relationships with structural segmentation of the axial zone. Axial magma lens (AML) reflections are imaged beneath much of the ridge axis (mean depth 1,640 ± 185 m), as are deeper sub‐AML (SAML) reflections (brightest events ~100–800 m below AML). Local shallow regions in the AML underlie two regions of shallow seafloor depth from 9°40′–55′N and 8°26′–33′N. Enhanced magma replenishment at present beneath both sites is inferred and may be linked to nearby off‐axis volcanic chains. SAML reflections, which are observed primarily from 9°20′ to 10°05′N, indicate a finely segmented magma reservoir similar to the AML above, composed of subhorizontal, 2‐ to 7 km‐long AML segments, often with stepwise changes in reflector depth from one segment to the next. We infer that these melt bodies are related to short‐lived melt instability zones. In many locations including where seismic constraints are strongest the intermediate scale (~15–40 km) structural segmentation of the ridge axis identified in this region coincides with (1) changes in average thickness of layer 2A (by 10%–15%), (2) changes in average depth of AML (<100 m), and (3) with the spacing of punctuated low velocity zones mapped in the uppermost mantle. The ~6 km dominant length of multiple AML segments within each of the larger structural segments may reflect the spacing of local sites of ascending magma from discrete melt reservoirs pooled beneath the crust.
Description
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Crustal magmatic system beneath the East Pacific Rise (8°200 to 10°100N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges. Geochemistry, Geophysics, Geosystems, 19, (2018): 4584–4611, doi: 10.1029/2018GC007590 .
Embargo Date
Citation
Marjanović, M., Carbotte, S. M., Carton, H. D., Nedimović, M. R., Canales, J. P., & Mutter, J. C. (2018). Crustal magmatic system beneath the East Pacific Rise (8°200 to 10°100N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges. Geochemistry, Geophysics, Geosystems, 19, 4584–4611
Cruises
Cruise ID
Cruise DOI
Vessel Name