Bakker Dorothee C. E.

No Thumbnail Available
Last Name
Bakker
First Name
Dorothee C. E.
ORCID
0000-0001-9234-5337

Search Results

Now showing 1 - 10 of 10
  • Article
    Synthesis of iron fertilization experiments : from the Iron Age in the Age of Enlightenment
    (American Geophysical Union, 2005-09-28) Baar, Hein J. W. de ; Boyd, Philip W. ; Coale, Kenneth H. ; Landry, Michael R. ; Tsuda, Atsushi ; Assmy, Philipp ; Bakker, Dorothee C. E. ; Bozec, Yann ; Barber, Richard T. ; Brzezinski, Mark A. ; Buesseler, Ken O. ; Boye, Marie ; Croot, Peter L. ; Gervais, Frank ; Gorbunov, Maxim Y. ; Harrison, Paul J. ; Hiscock, William T. ; Laan, Patrick ; Lancelot, Christiane ; Law, Cliff S. ; Levasseur, Maurice ; Marchetti, Adrian ; Millero, Frank J. ; Nishioka, Jun ; Nojiri, Yukihiro ; van Oijen, Tim ; Riebesell, Ulf ; Rijkenberg, Micha J. A. ; Saito, Hiroaki ; Takeda, Shigenobu ; Timmermans, Klaas R. ; Veldhuis, Marcel J. W. ; Waite, Anya M. ; Wong, Chi-Shing
    Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (>60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate < 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.
  • Article
    On the future of Argo: A global, full-depth, multi-disciplinary array
    (Frontiers Media, 2019-08-02) Roemmich, Dean ; Alford, Matthew H. ; Claustre, Hervé ; Johnson, Kenneth S. ; King, Brian ; Moum, James N. ; Oke, Peter ; Owens, W. Brechner ; Pouliquen, Sylvie ; Purkey, Sarah G. ; Scanderbeg, Megan ; Suga, Koushirou ; Wijffels, Susan E. ; Zilberman, Nathalie ; Bakker, Dorothee ; Baringer, Molly O. ; Belbeoch, Mathieu ; Bittig, Henry C. ; Boss, Emmanuel S. ; Calil, Paulo H. R. ; Carse, Fiona ; Carval, Thierry ; Chai, Fei ; Conchubhair, Diarmuid Ó. ; d’Ortenzio, Fabrizio ; Dall'Olmo, Giorgio ; Desbruyeres, Damien ; Fennel, Katja ; Fer, Ilker ; Ferrari, Raffaele ; Forget, Gael ; Freeland, Howard ; Fujiki, Tetsuichi ; Gehlen, Marion ; Geenan, Blair ; Hallberg, Robert ; Hibiya, Toshiyuki ; Hosoda, Shigeki ; Jayne, Steven R. ; Jochum, Markus ; Johnson, Gregory C. ; Kang, KiRyong ; Kolodziejczyk, Nicolas ; Körtzinger, Arne ; Le Traon, Pierre-Yves ; Lenn, Yueng-Djern ; Maze, Guillaume ; Mork, Kjell Arne ; Morris, Tamaryn ; Nagai, Takeyoshi ; Nash, Jonathan D. ; Naveira Garabato, Alberto C. ; Olsen, Are ; Pattabhi Rama Rao, Eluri ; Prakash, Satya ; Riser, Stephen C. ; Schmechtig, Catherine ; Schmid, Claudia ; Shroyer, Emily L. ; Sterl, Andreas ; Sutton, Philip J. H. ; Talley, Lynne D. ; Tanhua, Toste ; Thierry, Virginie ; Thomalla, Sandy J. ; Toole, John M. ; Troisi, Ariel ; Trull, Thomas W. ; Turton, Jon ; Velez-Belchi, Pedro ; Walczowski, Waldemar ; Wang, Haili ; Wanninkhof, Rik ; Waterhouse, Amy F. ; Waterman, Stephanie N. ; Watson, Andrew J. ; Wilson, Cara ; Wong, Annie P. S. ; Xu, Jianping ; Yasuda, Ichiro
    The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.
  • Article
    Global carbon budget 2017
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-03-12) Le Quere, Corinne ; Andrew, Robbie M. ; Friedlingstein, Pierre ; Sitch, Stephen ; Pongratz, Julia ; Manning, Andrew C. ; Korsbakken, Jan Ivar ; Peters, Glen P. ; Canadell, Josep G. ; Jackson, Robert B. ; Boden, Thomas A. ; Tans, Pieter P. ; Andrews, Oliver D. ; Arora, Vivek K. ; Bakker, Dorothee ; Barbero, Leticia ; Becker, Meike ; Betts, Richard A. ; Bopp, Laurent ; Chevallier, Frédéric ; Chini, Louise Parsons ; Ciais, Philippe ; Cosca, Catherine E. ; Cross, Jessica N. ; Currie, Kim I. ; Gasser, Thomas ; Harris, Ian ; Hauck, Judith ; Haverd, Vanessa ; Houghton, Richard A. ; Hunt, Christopher W. ; Hurtt, George ; Ilyina, Tatiana ; Jain, Atul K. ; Kato, Etsushi ; Kautz, Markus ; Keeling, Ralph F. ; Klein Goldewijk, Kees ; Körtzinger, Arne ; Landschützer, Peter ; Lefèvre, Nathalie ; Lenton, Andrew ; Lienert, Sebastian ; Lima, Ivan D. ; Lombardozzi, Danica ; Metzl, Nicolas ; Millero, Frank J. ; Monteiro, Pedro M. S. ; Munro, David R. ; Nabel, Julia E. M. S. ; Nakaoka, Shin-ichiro ; Nojiri, Yukihiro ; Padin, X. Antonio ; Peregon, Anna ; Pfeil, Benjamin ; Pierrot, Denis ; Poulter, Benjamin ; Rehder, Gregor ; Reimer, Janet ; Rödenbeck, Christian ; Schwinger, Jorg ; Séférian, Roland ; Skjelvan, Ingunn ; Stocker, Benjamin D. ; Tian, Hanqin ; Tilbrook, Bronte ; Tubiello, Francesco N. ; van der Laan-Luijkx, Ingrid T. ; van der Werf, Guido R. ; van Heuven, Steven ; Viovy, Nicolas ; Vuichard, Nicolas ; Walker, Anthony P. ; Watson, Andrew J. ; Wiltshire, Andrew J. ; Zaehle, Sonke ; Zhu, Dan
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
  • Article
    Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-06-19) Lenton, Andrew ; Tilbrook, Bronte ; Law, R. M. ; Bakker, Dorothee C. E. ; Doney, Scott C. ; Gruber, Nicolas ; Ishii, Masao ; Hoppema, Mario ; Lovenduski, Nicole S. ; Matear, Richard J. ; McNeil, B. I. ; Metzl, Nicolas ; Mikaloff Fletcher, Sara E. ; Monteiro, Pedro M. S. ; Rodenbeck, C. ; Sweeney, Colm ; Takahashi, Taro
    The Southern Ocean (44–75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea–air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea–air CO2 fluxes between 1990–2009. Using all models and inversions (26), the integrated median annual sea–air CO2 flux of −0.42 ± 0.07 Pg C yr−1 for the 44–75° S region, is consistent with the −0.27 ± 0.13 Pg C yr−1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: −0.04 ± 0.07 Pg C yr−1 and observations: +0.04 ± 0.02 Pg C yr−1), with most of the net annual flux located in the 44 to 58° S circumpolar band (model and inversion median: −0.36 ± 0.09 Pg C yr−1 and observations: −0.35 ± 0.09 Pg C yr−1). Seasonally, in the 44–58° S region, the median of 5 ocean biogeochemical models captures the observed sea–air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea–air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux, with 25% of this interannual variability attributed to the region south of 58° S. Resolving long-term trends is difficult due to the large interannual variability and short time frame (1990–2009) of this study; this is particularly evident from the large spread in trends from inversions and ocean biogeochemical models. Nevertheless, in the period 1990–2009 ocean biogeochemical models do show increasing oceanic uptake consistent with the expected increase of −0.05 Pg C yr−1 decade−1. In contrast, atmospheric inversions suggest little change in the strength of the CO2 sink broadly consistent with the results of Le Quéré et al. (2007).
  • Article
    A new database to explore the findings from large-scale ocean iron enrichment experiments
    (The Oceanography Society, 2012-12) Boyd, Philip W. ; Bakker, Dorothee C. E. ; Chandler, Cynthia L.
    Some of the largest scientific manipulation experiments conducted on our planet have enriched broad swaths of the surface ocean with iron. Surface ocean signatures of these iron enrichment experiments have covered areas up to > 1,000 km2 and have been conspicuous from space. Twelve of these multidisciplinary studies have been conducted since the early 1990s in three specific ocean regions—the Southern Ocean, and equatorial and sub-Arctic areas of the Pacific Ocean—where plant nutrients are perennially high (termed high nutrient low chlorophyll, or HNLC). In addition, a combined phosphorus and iron enrichment experiment was conducted in the oligotrophic North Atlantic Ocean. Together, these studies represent a unique set of physical, chemical, optical, biological, and ecological data. The richness of these data sets is captured in an open-access relational database at the Biological and Chemical Oceanography Data Management Office. It is a product of Working Group 131 (The Legacy of in situ Iron Enrichment: Data Compilation and Modeling; http://www.scor-int.org/Working_Groups/wg131.htm) of the Scientific Committee on Oceanic Research. The purpose of this article is to make the wider community aware of this resource. It also presents the merits and provides examples of the utility of this database for exploring emerging topics in oceanography, such as the links between ecosystem processes and biogeochemical cycles; the feasibility and many side effects of oceanic geoengineering; and how understanding the coupling among physical, chemical, and biological processes at the mesoscale can inform the emerging field of submesoscale biogeochemistry.
  • Article
    Shelled pteropods in peril : assessing vulnerability in a high CO2 ocean
    (Elsevier, 2017-04-09) Manno, Clara ; Bednarsek, Nina ; Tarling, Geraint A. ; Peck, Vicky L. ; Comeau, Steeve ; Adhikari, Deepak ; Bakker, Dorothee ; Bauerfeind, Eduard ; Bergan, Alexander J. ; Berning, Maria I. ; Buitenhuis, Erik T. ; Burridge, Alice K. ; Chierici, Melissa ; Flöter, Sebastian ; Fransson, Agneta ; Gardner, Jessie ; Howes, Ella L. ; Keul, Nina ; Kimoto, Katsunori ; Kohnert, Peter ; Lawson, Gareth L. ; Lischka, Silke ; Maas, Amy E. ; Mekkes, Lisette ; Oakes, Rosie L. ; Pebody, Corinne ; Peijnenburg, Katja T. C. A. ; Seifert, Miriam ; Skinner, Jennifer ; Thibodeau, Patricia S. ; Wall-Palmer, Deborah ; Ziveri, Patrizia
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
  • Article
    The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation
    (John Wiley & Sons, 2014-06-05) Jullion, Loic ; Naveira Garabato, Alberto C. ; Bacon, Sheldon ; Meredith, Michael P. ; Brown, Peter J. ; Torres-Valdes, Sinhue ; Speer, Kevin G. ; Holland, Paul R. ; Dong, Jun ; Bakker, Dorothee C. E. ; Hoppema, Mario ; Loose, Brice ; Venables, Hugh J. ; Jenkins, William J. ; Messias, Marie-Jose ; Fahrbach, Eberhard
    The horizontal and vertical circulation of the Weddell Gyre is diagnosed using a box inverse model constructed with recent hydrographic sections and including mobile sea ice and eddy transports. The gyre is found to convey 42 ± 8 Sv (1 Sv = 106 m3 s–1) across the central Weddell Sea and to intensify to 54 ± 15 Sv further offshore. This circulation injects 36 ± 13 TW of heat from the Antarctic Circumpolar Current to the gyre, and exports 51 ± 23 mSv of freshwater, including 13 ± 1 mSv as sea ice to the midlatitude Southern Ocean. The gyre's overturning circulation has an asymmetric double-cell structure, in which 13 ± 4 Sv of Circumpolar Deep Water (CDW) and relatively light Antarctic Bottom Water (AABW) are transformed into upper-ocean water masses by midgyre upwelling (at a rate of 2 ± 2 Sv) and into denser AABW by downwelling focussed at the western boundary (8 ± 2 Sv). The gyre circulation exhibits a substantial throughflow component, by which CDW and AABW enter the gyre from the Indian sector, undergo ventilation and densification within the gyre, and are exported to the South Atlantic across the gyre's northern rim. The relatively modest net production of AABW in the Weddell Gyre (6 ± 2 Sv) suggests that the gyre's prominence in the closure of the lower limb of global oceanic overturning stems largely from the recycling and equatorward export of Indian-sourced AABW.
  • Article
    Global Carbon Budget 2015
    (Copernicus Publications, 2015-12-07) Le Quere, Corinne ; Moriarty, Roisin ; Andrew, Robbie M. ; Canadell, Josep G. ; Sitch, Stephen ; Korsbakken, Jan Ivar ; Friedlingstein, Pierre ; Peters, Glen P. ; Andres, Robert J. ; Boden, Thomas A. ; Houghton, Richard A. ; House, Jo I. ; Keeling, Ralph F. ; Tans, Pieter P. ; Arneth, Almut ; Bakker, Dorothee C. E. ; Barbero, Leticia ; Bopp, Laurent ; Chang, J. ; Chevallier, Frédéric ; Chini, Louise Parsons ; Ciais, Philippe ; Fader, Marianela ; Feely, Richard A. ; Gkritzalis, Thanos ; Harris, Ian ; Hauck, Judith ; Ilyina, Tatiana ; Jain, Atul K. ; Kato, Etsushi ; Kitidis, Vassilis ; Klein Goldewijk, Kees ; Koven, Charles ; Landschutzer, Peter ; Lauvset, Siv K. ; Lefevre, N. ; Lenton, Andrew ; Lima, Ivan D. ; Metzl, Nicolas ; Millero, Frank J. ; Munro, David R. ; Murata, Akihiko ; Nabel, Julia E. M. S. ; Nakaoka, Shin-ichiro ; Nojiri, Yukihiro ; O'Brien, Kevin ; Olsen, Are ; Ono, Tsuneo ; Perez, Fiz F. ; Pfeil, Benjamin ; Pierrot, Denis ; Poulter, Benjamin ; Rehder, Gregor ; Rodenbeck, C. ; Saito, Shu ; Schuster, Ute ; Schwinger, Jorg ; Seferian, Roland ; Steinhoff, Tobias ; Stocker, Benjamin D. ; Sutton, Adrienne J. ; Takahashi, Taro ; Tilbrook, Bronte ; van der Laan-Luijkx, I. T. ; van der Werf, Guido R. ; van Heuven, Steven ; Vandemark, Douglas ; Viovy, Nicolas ; Wiltshire, Andrew J. ; Zaehle, Sonke ; Zeng, Ning
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
  • Article
    Global surface ocean acidification indicators from 1750 to 2100
    (American Geophysical Union, 2023-03-23) Jiang, Li-Qing ; Dunne, John ; Carter, Brendan R. ; Tjiputra, Jerry F. ; Terhaar, Jens ; Sharp, Jonathan D. ; Olsen, Are ; Alin, Simone ; Bakker, Dorothee C. E. ; Feely, Richard A. ; Gattuso, Jean-Pierre ; Hogan, Patrick ; Ilyina, Tatiana ; Lange, Nico ; Lauvset, Siv K. ; Lewis, Ernie R. ; Lovato, Tomas ; Palmieri, Julien ; Santana-Falcon, Yeray ; Schwinger, Joerg ; Seferian, Roland ; Strand, Gary ; Swart, Neil ; Tanhua, Toste ; Tsujino, Hiroyuki ; Wanninkhof, Rik ; Watanabe, Michio ; Yamamoto, Akitomo ; Ziehn, Tilo
    Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html.
  • Article
    Global carbon budget 2013
    (Copernicus Publications., 2014-06-17) Le Quere, Corinne ; Peters, Glen P. ; Andres, Robert J. ; Andrew, Robbie M. ; Boden, Thomas A. ; Ciais, Philippe ; Friedlingstein, Pierre ; Houghton, Richard A. ; Marland, G. ; Moriarty, Roisin ; Sitch, Stephen ; Tans, Pieter P. ; Arneth, Almut ; Arvanitis, A. ; Bakker, Dorothee C. E. ; Bopp, Laurent ; Canadell, Josep G. ; Chini, Louise Parsons ; Doney, Scott C. ; Harper, Anna B. ; Harris, Ian ; House, Jo I. ; Jain, Atul K. ; Jones, S. D. ; Kato, Etsushi ; Keeling, Ralph F. ; Klein Goldewijk, Kees ; Kortzinger, A. ; Koven, Charles ; Lefevre, N. ; Maignan, F. ; Omar, A. ; Ono, Tsuneo ; Park, Geun-Ha ; Pfeil, Benjamin ; Poulter, Benjamin ; Raupach, Michael R. ; Regnier, P. ; Rodenbeck, C. ; Saito, Shu ; Schwinger, Jorg ; Segschneider, J. ; Stocker, Benjamin D. ; Takahashi, Taro ; Tilbrook, Bronte ; van Heuven, Steven ; Viovy, Nicolas ; Wanninkhof, Rik ; Wiltshire, Andrew J. ; Zaehle, Sonke
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.5 ± 0.5 GtC yr−1, and SLAND 2.8 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming an ELUC of 1.0 ± 0.5 GtC yr−1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC).