Chen
Jia-Lin
Chen
Jia-Lin
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleHydrodynamic and sediment transport modeling of New River Inlet (NC) under the interaction of tides and waves(John Wiley & Sons, 2015-06-07) Chen, Jia-Lin ; Hsu, Tian-Jian ; Shi, Fengyan ; Raubenheimer, Britt ; Elgar, SteveThe interactions between waves, tidal currents, and bathymetry near New River Inlet, NC, USA are investigated to understand the effects on the resulting hydrodynamics and sediment transport. A quasi-3-D nearshore community model, NearCoM-TVD, is used in this integrated observational and modeling study. The model is validated with observations of waves and currents at 30 locations, including in a recently dredged navigation channel and a shallower channel, and on the ebb tidal delta, for a range of flow and offshore wave conditions during May 2012. In the channels, model skills for flow velocity and wave height are high. Near the ebb tidal delta, the model reproduces the observed rapid onshore (offshore) decay of wave heights (current velocities). Model results reveal that this sharp transition coincides with the location of the breaker zone over the ebb tidal delta, which is modulated by semidiurnal tides and by wave intensity. The modulation of wave heights is primarily owing to depth changes rather than direct wave-current interaction. The modeled tidally averaged residual flow patterns show that waves play an important role in generating vortices and landward-directed currents near the inlet entrance. Numerical experiments suggest that these flow patterns are associated with the channel-shoal bathymetry near the inlet, similar to the generation of rip currents. Consistent with other inlet studies, model results suggest that tidal currents drive sediment fluxes in the channels, but that sediment fluxes on the ebb tidal delta are driven primarily by waves.
-
ArticleTidal flow asymmetry owing to inertia and waves on an unstratified, shallow ebb shoal(John Wiley & Sons, 2018-09-22) Wargula, Anna E. ; Raubenheimer, Britt ; Elgar, Steve ; Chen, Jia-Lin ; Shi, Fengyan ; Traykovski, Peter A.Observations of water levels, waves, currents, and bathymetry collected for a month at an unstratified tidal inlet with a shallow (1 to 2 m deep) ebb shoal are used to evaluate the asymmetry in flows and dynamics owing to inertia and waves. Along‐channel currents ranged from −1.5 to 0.6 m/s (positive inland) inside the main (3 to 5 m deep) channel crossing the ebb shoal. Net discharge is negligible, and ebb dominance of the channel flows is owing to inflow and outflow asymmetries near the inlet mouth. Offshore wave heights ranged from 0.5 to 2.5 m. During moderate to large wave events (offshore significant wave heights >1.2 m), wave forcing enhanced onshore mass flux near the shoal edge and inside the inlet, leading to reduced ebb flow dominance. Momentum balances estimated with the water depths, currents, and waves simulated with a quasi 3‐D numerical model reproduce the momentum balances estimated from the observations reasonably well. Both observations and simulations suggest that ebb‐dominant bottom stresses are balanced by the ebb‐dominant pressure gradient and the tidally asymmetric inertia, which is a sink (source) of momentum on flood (ebb). Simulations with and without waves suggest that waves drive local and nonlocal changes in the water levels and flows. Specifically, breaking waves at the offshore edge of the ebb shoal induce setup and partially block the ebb jet (local effects), which leads to a more onshore‐directed mass flux, changes to the advection across the ebb shoal, and increased water levels inside the inlet mouth (nonlocal effects).
-
DatasetMechanisms of exchange flow in an estuary with a narrow, deep channel and wide, shallow shoals(Woods Hole Oceanographic Institution, 2020-01-31) Geyer, W. Rockwell ; Ralston, David K. ; Chen, Jia-LinDelaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel-shoal” estuary. This numerical modeling study addresses the exchange flow in this channel-shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides, but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross-channel flow, which strongly influences the stratification, along-estuary salt balance and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion during both spring and neap tides and is a significant advective momentum source driving the residual circulation. Thus, although the shoals make a negligible direct contribution to the exchange flow, the salinity gradients between the channel and the shoal are critical to the stratification and exchange flow within the estuarine channel.