He
Ruoying
He
Ruoying
No Thumbnail Available
23 results
Search Results
Now showing
1 - 20 of 23
-
ArticleCoastal ocean wind fields gauged against the performance of an ocean circulation model(American Geophysical Union, 2004-07-17) He, Ruoying ; Liu, Yonggang ; Weisberg, Robert H.Atmosphere model-derived flux fields are used to force coastal ocean models. Coarse resolution and incomplete boundary layer dynamics limit the accuracy of these forcing fields and hence the performance of the ocean models. We address this limitation for the west Florida shelf using optimal interpolation to blend winds measured in situ with winds produced by model analyses. By improving the coastal wind field we improve the fidelity between currents modeled and currents observed. Comparisons between momentum analyses performed independently from the model and the data demonstrate the fidelity to be of a correct dynamical basis. We conclude that the primary limitation to coastal ocean model performance lies with the boundary conditions.
-
ArticleOcean–atmosphere dynamics during Hurricane Ida and Nor’Ida : an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system(Elsevier B.V., 2011-12-30) Olabarrieta, Maitane ; Warner, John C. ; Armstrong, Brandy ; Zambon, Joseph B. ; He, RuoyingThe coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
-
ArticleSea surface temperature patterns on the West Florida Shelf using growing hierarchical self-organizing maps(American Meteorological Society, 2006-02) Liu, Yonggang ; Weisberg, Robert H. ; He, RuoyingNeural network analyses based on the self-organizing map (SOM) and the growing hierarchical self-organizing map (GHSOM) are used to examine patterns of the sea surface temperature (SST) variability on the West Florida Shelf from time series of daily SST maps from 1998 to 2002. Four characteristic SST patterns are extracted in the first-layer GHSOM array: winter and summer season patterns, and two transitional patterns. Three of them are further expanded in the second layer, yielding more detailed structures in these seasons. The winter pattern is one of low SST, with isotherms aligned approximately along isobaths. The summer pattern is one of high SST distributed in a horizontally uniform manner. The spring transition includes a midshelf cold tongue. Similar analyses performed on SST anomaly data provide further details of these seasonally varying patterns. It is demonstrated that the GHSOM analysis is more effective in extracting the inherent SST patterns than the widely used EOF method. The underlying patterns in a dataset can be visualized in the SOM array in the same form as the original data, while they can only be expressed in anomaly form in the EOF analysis. Some important features, such as asymmetric SST anomaly patterns of winter/summer and cold/warm tongues, can be revealed by the SOM array but cannot be identified in the lowest mode EOF patterns. Also, unlike the EOF or SOM techniques, the hierarchical structure in the input data can be extracted by the GHSOM analysis.
-
ArticleDynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: satellite observations and numerical modeling(Elsevier, 2020-10-26) Li, Yizhen ; Stumpf, Richard P. ; McGillicuddy, Dennis J. ; He, RuoyingIn July 2009, an unusually intense bloom of the toxic dinoflagellate Alexandrium catenella occurred in the Gulf of Maine. The bloom reached high concentrations (from hundreds of thousands to one million cells L−1) that discolored the water and exceeded normal bloom concentrations by a factor of 1000. Using Medium Resolution Imaging Spectrometer (MERIS) imagery processed to target chlorophyll concentrations (>2 µg L−1), patches of intense A. catenella concentration were identified that were consistent with the highly localized cell concentrations observed from ship surveys. The bloom patches were generally aligned with the edge of coastal waters with high-absorption. Dense bloom patches moved onshore in response to a downwelling event, persisted for approximately one week, then dispersed rapidly over a few days and did not reappear. Coupled physical-biological model simulations showed that wind forcing was an important factor in transporting cells onshore. Upward swimming behavior facilitated the horizontal cell aggregation, increasing the simulated maximum depth-integrated cell concentration by up to a factor of 40. Vertical convergence of cells, due to active swimming of A. catenella from the subsurface to the top layer, could explain the additional 25-fold intensification (25 × 40=1000-fold) needed to reach the bloom concentrations that discolored the water. A model simulation that considered upward swimming overestimated cell concentrations downstream of the intense aggregation. This discrepancy between model and observed concentrations suggested a loss of cells from the water column at a time that corresponded to the start of encystment. These results indicated that the joint effect of upward swimming, horizontal convergence, and wind-driven flow contributed to the red water event, which might have promoted the sexual reproduction event that preceded the encystment process.
-
ArticleVariational data assimilative modeling of the Gulf of Maine in spring and summer 2010(John Wiley & Sons, 2015-05-19) Li, Yizhen ; He, Ruoying ; Chen, Ke ; McGillicuddy, Dennis J.A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.
-
ArticleTropical to extratropical : marine environmental changes associated with Superstorm Sandy prior to its landfall(John Wiley & Sons, 2014-12-16) Zambon, Joseph B. ; He, Ruoying ; Warner, John C.Superstorm Sandy was a massive storm that impacted the U.S. East Coast on 22–31 October 2012, generating large waves, record storm surges, and major damage. The Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system was applied to hindcast this storm. Sensitivity experiments with increasing complexity of air-sea-wave coupling were used to depict characteristics of this immense storm as it underwent tropical to extratropical transition. Regardless of coupling complexity, model-simulated tracks were all similar to the observations, suggesting the storm track was largely determined by large-scale synoptic atmospheric circulation, rather than by local processes resolved through model coupling. Analyses of the sea surface temperature, ocean heat content, and upper atmospheric shear parameters showed that as a result of the extratropical transition and despite the storm encountering much cooler shelf water, its intensity and strength were not significantly impacted. Ocean coupling was not as important as originally thought for Sandy.
-
ArticleThe future of coastal and estuarine modeling: findings from a workshop(Elsevier, 2019-09-16) Fringer, Oliver B. ; Dawson, Clint N. ; He, Ruoying ; Ralston, David K. ; Zhang, Y. JosephThis paper summarizes the findings of a workshop convened in the United States in 2018 to discuss methods in coastal and estuarine modeling and to propose key areas of research and development needed to improve their accuracy and reliability. The focus of this paper is on physical processes, and we provide an overview of the current state-of-the-art based on presentations and discussions at the meeting, which revolved around the four primary themes of parameterizations, numerical methods, in-situ and remote-sensing measurements, and high-performance computing. A primary outcome of the workshop was agreement on the need to reduce subjectivity and improve reproducibility in modeling of physical processes in the coastal ocean. Reduction of subjectivity can be accomplished through development of standards for benchmarks, grid generation, and validation, and reproducibility can be improved through development of standards for input/output, coupling and model nesting, and reporting. Subjectivity can also be reduced through more engagement with the applied mathematics and computer science communities to develop methods for robust parameter estimation and uncertainty quantification. Such engagement could be encouraged through more collaboration between the forward and inverse modeling communities and integration of more applied math and computer science into oceanography curricula. Another outcome of the workshop was agreement on the need to develop high-resolution models that scale on advanced HPC systems to resolve, rather than parameterize, processes with horizontal scales that range between the depth and the internal Rossby deformation scale. Unsurprisingly, more research is needed on parameterizations of processes at scales smaller than the depth, including parameterizations for drag (including bottom roughness, bedforms, vegetation and corals), wave breaking, and air–sea interactions under strong wind conditions. Other topics that require significantly more work to better parameterize include nearshore wave modeling, sediment transport modeling, and morphodynamics. Finally, it was agreed that coastal models should be considered as key infrastructure needed to support research, just like laboratory facilities, field instrumentation, and research vessels. This will require a shift in the way proposals related to coastal ocean modeling are reviewed and funded.
-
ArticleMean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model(Copernicus Publications on behalf of the European Geosciences Union, 2015-07-03) Chen, Ke ; He, RuoyingA regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.
-
ArticleOverview of the Processes driving Exchange At Cape Hatteras Program(Oceanography Society, 2022-05-12) Seim, Harvey E. ; Savidge, Dana ; Andres, Magdalena ; Bane, John M. ; Edwards, Catherine ; Gawarkiewicz, Glen G. ; He, Ruoying ; Todd, Robert E. ; Muglia, Michael ; Zambon, Joseph B. ; Han, Lu ; Mao, ShunThe Processes driving Exchange At Cape Hatteras (PEACH) program seeks to better understand seawater exchanges between the continental shelf and the open ocean near Cape Hatteras, North Carolina. This location is where the Gulf Stream transitions from a boundary-trapped current to a free jet, and where robust along-shelf convergence brings cool, relatively fresh Middle Atlantic Bight and warm, salty South Atlantic Bight shelf waters together, forming an important and dynamic biogeographic boundary. The magnitude of this convergence implies large export of shelf water to the open ocean here. Background on the oceanography of the region provides motivation for the study and gives context for the measurements that were made. Science questions focus on the roles that wind forcing, Gulf Stream forcing, and lateral density gradients play in driving exchange. PEACH observational efforts include a variety of fixed and mobile observing platforms, and PEACH modeling included two different resolutions and data assimilation schemes. Findings to date on mean circulation, the nature of export from the southern Middle Atlantic Bight shelf, Gulf Stream variability, and position variability of the Hatteras Front are summarized, together with a look ahead to forthcoming analyses.
-
ArticleDispersion of a tracer in the deep Gulf of Mexico(John Wiley & Sons, 2016-02-05) Ledwell, James R. ; He, Ruoying ; Xue, Zuo ; DiMarco, Steven ; Spencer, Laura J. ; Chapman, PiersA 25 km streak of CF3SF5 was released on an isopycnal surface approximately 1100 m deep, and 150 m above the bottom, along the continental slope of the northern Gulf of Mexico, to study stirring and mixing of a passive tracer. The location and depth of the release were near those of the deep hydrocarbon plume resulting from the 2010 Deepwater Horizon oil well rupture. The tracer was sampled between 5 and 12 days after release, and again 4 and 12 months after release. The tracer moved along the slope at first but gradually moved into the interior of the Gulf. Diapycnal spreading of the patch during the first 4 months was much faster than it was between 4 and 12 months, indicating that mixing was greatly enhanced over the slope. The rate of lateral homogenization of the tracer was much greater than observed in similar experiments in the open ocean, again possibly enhanced near the slope. Maximum concentrations found in the surveys had fallen by factors of 104, 107, and 108, at 1 week, 4 months, and 12 months, respectively, compared with those estimated for the initial tracer streak. A regional ocean model was used to simulate the tracer field and help interpret its dispersion and temporal evolution. Model-data comparisons show that the model simulation was able to replicate statistics of the observed tracer distribution that would be important in assessing the impact of oil releases in the middepth Gulf.
-
ArticleData assimilative modeling investigation of Gulf Stream Warm Core Ring interaction with continental shelf and slope circulation(John Wiley & Sons, 2014-09-12) Chen, Ke ; He, Ruoying ; Powell, Brian S. ; Gawarkiewicz, Glen G. ; Moore, Andrew M. ; Arango, Hernan G.A data assimilative ocean circulation model is used to hindcast the interaction between a large Gulf Stream Warm Core Ring (WCR) with the Mid-Atlantic Bight (MAB) shelf and slope circulation. Using the recently developed Incremental Strong constraint 4D Variational (I4D-Var) data assimilation algorithm, the model assimilates mapped satellite sea surface height (SSH), sea surface temperature (SST), in situ temperature, and salinity profiles measured by expendable bathythermograph, Argo floats, shipboard CTD casts, and glider transects. Model validations against independent hydrographic data show 60% and 57% error reductions in temperature and salinity, respectively. The WCR significantly changed MAB continental slope and shelf circulation. The mean cross-shelf transport induced by the WCR is estimated to be 0.28 Sv offshore, balancing the mean along-shelf transport by the shelfbreak jet. Large heat/salt fluxes with peak values of 8900 W m−2/4 × 10−4 kg m−2 s−1 are found when the WCR was impinging upon the shelfbreak. Vorticity analysis reveals the nonlinear advection term, as well as the residual of joint effect of baroclinicity and bottom relief (JEBAR) and advection of potential vorticity (APV) play important roles in controlling the variability of the eddy vorticity.
-
PreprintA red tide of Alexandrium fundyense in the Gulf of Maine( 2013-04-15) McGillicuddy, Dennis J. ; Brosnahan, Michael L. ; Couture, Darcie A. ; He, Ruoying ; Keafer, Bruce A. ; Manning, James P. ; Martin, Jennifer L. ; Pilskaln, Cynthia H. ; Townsend, David W. ; Anderson, Donald M.In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the red water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.
-
ArticleSuppression of the 2010 Alexandrium fundyense bloom by changes in physical, biological, and chemical properties of the Gulf of Maine(Association for the Sciences of Limnology and Oceanography, 2011-11) McGillicuddy, Dennis J. ; Townsend, David W. ; He, Ruoying ; Keafer, Bruce A. ; Kleindinst, Judith L. ; Li, Y. ; Manning, James P. ; Mountain, David G. ; Thomas, Maura A. ; Anderson, Donald M.For the period 2005–2009, the abundance of resting cysts in bottom sediments from the preceding autumn was a first-order predictor of the overall severity of spring–summer blooms of Alexandrium fundyense in the western Gulf of Maine and southern New England. Cyst abundance off mid-coast Maine was significantly higher in autumn 2009 than it was preceding a major regional bloom in 2005. A seasonal ensemble forecast was computed using a range of forcing conditions for the period 2004–2009, suggesting that a large bloom was likely in the western Gulf of Maine in 2010. This did not materialize, perhaps because environmental conditions in spring–summer 2010 were not favorable for growth of A. fundyense. Water mass anomalies indicate a regional-scale change in circulation with direct influence on A. fundyense's niche. Specifically, near-surface waters were warmer, fresher, more stratified, and had lower nutrients than during the period of observations used to construct the ensemble forecast. Moreover, a weaker-than-normal coastal current lessened A. fundyense transport into the western Gulf of Maine and Massachusetts Bay. Satellite ocean color observations indicate the 2010 spring phytoplankton bloom was more intense than usual. Early season nutrient depletion may have caused a temporal mismatch with A. fundyense's endogenous clock that regulates the timing of cyst germination. These findings highlight the difficulties of ecological forecasting in a changing oceanographic environment, and underscore the need for a sustained observational network to drive such forecasts.
-
ArticleDevelopment of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System(Elsevier B.V., 2010-07-29) Warner, John C. ; Armstrong, Brandy ; He, Ruoying ; Zambon, Joseph B.Understanding the processes responsible for coastal change is important for managing our coastal resources, both natural and economic. The current scientific understanding of coastal sediment transport and geology suggests that examining coastal processes at regional scales can lead to significant insight into how the coastal zone evolves. To better identify the significant processes affecting our coastlines and how those processes create coastal change we developed a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System, which is comprised of the Model Coupling Toolkit to exchange data fields between the ocean model ROMS, the atmosphere model WRF, the wave model SWAN, and the sediment capabilities of the Community Sediment Transport Model. This formulation builds upon previous developments by coupling the atmospheric model to the ocean and wave models, providing one-way grid refinement in the ocean model, one-way grid refinement in the wave model, and coupling on refined levels. Herein we describe the modeling components and the data fields exchanged. The modeling system is used to identify model sensitivity by exchanging prognostic variable fields between different model components during an application to simulate Hurricane Isabel during September 2003. Results identify that hurricane intensity is extremely sensitive to sea surface temperature. Intensity is reduced when coupled to the ocean model although the coupling provides a more realistic simulation of the sea surface temperature. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased bottom stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave–current interactions with the ocean and wave growth from the atmosphere wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach.
-
ArticleBarotropic tides on the southeast New England shelf : a view from a hybrid data assimilative modeling approach(American Geophysical Union, 2006-08-01) He, Ruoying ; Wilkin, John L.A high-resolution hybrid data assimilative (DA) modeling system is used to study barotropic tides and tidal dynamics on the southeast New England shelf. In situ observations include tidal harmonics of 5 major tidal constituents [M2, S2, N2, O1, and K1] analyzed from coastal sea level and bottom pressure gauges. The DA system consists of both forward and inverse models. The former is the three-dimensional, finite difference, nonlinear Regional Ocean Modeling System (ROMS). The latter is a three-dimensional linearized, frequency domain, finite element model TRUXTON. The DA system assimilates in situ observations via the inversion for the barotropic tidal open boundary conditions (OBCs). Model skill is evaluated by comparing the misfits between the observed and modeled tidal harmonics. The assimilation scheme is found effective and efficient in correcting the tidal OBCs, which in turn improve ROMS tidal solutions. Up to 50% decreases of model/data misfits are achieved after inverse data assimilation. Co-amplitude and co-phase maps and tidal current ellipses for each of 5 tidal constituents are generated, revealing complex tidal variability in this transition region between the tidally amplified Gulf of Maine in the northeast and the tidally much less energetic Middle Atlantic Bight in the southwest. Detailed examinations on the residual circulation, energetics, and momentum balances of the M2 tide reveal the key roles of the unique bottom bathymetry of Nantucket Shoals and the complex coastal geometry in affecting the regional tidal dynamics.
-
ArticleData assimilative hindcast of the Gulf of Maine coastal circulation(American Geophysical Union, 2005-10-12) He, Ruoying ; McGillicuddy, Dennis J. ; Lynch, Daniel R. ; Smith, Keston W. ; Stock, Charles A. ; Manning, James P.A data assimilative model hindcast of the Gulf of Maine (GOM) coastal circulation during an 11 day field survey in early summer 2003 is presented. In situ observations include surface winds, coastal sea levels, and shelf hydrography as well as moored and shipboard acoustic Doppler D current profiler (ADCP) currents. The hindcast system consists of both forward and inverse models. The forward model is a three-dimensional, nonlinear finite element ocean circulation model, and the inverse models are its linearized frequency domain and time domain counterparts. The model hindcast assimilates both coastal sea levels and ADCP current measurements via the inversion for the unknown sea level open boundary conditions. Model skill is evaluated by the divergence of the observed and modeled drifter trajectories. A mean drifter divergence rate (1.78 km d−1) is found, demonstrating the utility of the inverse data assimilation modeling system in the coastal ocean setting. Model hindcast also reveals complicated hydrodynamic structures and synoptic variability in the GOM coastal circulation and their influences on coastal water material property transport. The complex bottom bathymetric setting offshore of Penobscot and Casco bays is shown to be able to generate local upwelling and downwelling that may be important in local plankton dynamics.
-
ArticleHistoric 2005 toxic bloom of Alexandrium fundyense in the west Gulf of Maine : 1. In situ observations of coastal hydrography and circulation(American Geophysical Union, 2008-07-26) He, Ruoying ; McGillicuddy, Dennis J.An extensive Alexandrium fundyense bloom occurred along the coast of the Gulf of Maine in late spring and early summer 2005. To understand the physical aspects of bloom's initiation and development, in situ observations from both a coast-wide ship survey and the coastal observing network were used to characterize coastal circulation and hydrography during that time period. Comparisons between these in situ observations and their respective long-term means revealed anomalous ocean conditions during May 2005: waters were warmer and fresher coast-wide owing to more surface heating and river runoff; coastal currents were at least 2 times stronger than their climatological means. Surface winds were also anomalous in the form of both episodic bursts of northeast winds and a downwelling-favorable mean condition. These factors may have favored more vigorous along-shore transport and nearshore aggregation of toxic A. fundyense cells (a red tide) in 2005.
-
ArticleCoastal ocean circulation influences on remotely sensed optical properties : a West Florida Shelf case study(Oceanography Society, 2004-06) Weisberg, Robert H. ; He, Ruoying ; Kirkpatrick, Gary ; Muller-Karger, Frank E. ; Walsh, John J.Satellite-sensed ocean optical features are derived from a combination of factors, including the concentration of water properties by the ocean circulation and the modifications of these properties by biological and chemical processes. To demonstrate the role of the ocean circulation, we consider a case study on the upwelling of anomalously cold, nutrient-rich water and a related sea-surface temperature pattern that was observed on the West Florida Shelf. We use in situ data and a numerical model simulation to show how this pattern evolved in time and space and to draw a connection between a narrow band of cold water observed at the coast and the origin of this water a few hundred kilometers away at the shelf break via shoreward and southward advection within the bottom frictional (Ekman) boundary layer.
-
PreprintAdvancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System( 2017-04-19) Wilkin, John L. ; Rosenfeld, Leslie K. ; Allen, Arthur ; Baltes, Rebecca ; Baptista, Antonio ; He, Ruoying ; Hogan, Patrick ; Kurapov, Alexander ; Mehra, Avichal ; Quintrell, Josie ; Schwab, David ; Signell, Richard P. ; Smith, JaneThis paper outlines strategies that would advance coastal ocean modeling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the U.S. Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of U.S. based researchers with a cross-section of coastal oceanography and ocean modeling expertise and community representation drawn from Regional and U.S. Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modeling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3-8 year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, U.S. Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal-academic partnerships benefiting IOOS stakeholders and end users.
-
ArticleImpact of SST and surface waves on Hurricane Florence (2018): a coupled modeling investigation(American Meteorological Society, 2021-09-02) Zambon, Joseph B. ; He, Ruoying ; Warner, John C. ; Hegermiller, Christie A.Hurricane Florence (2018) devastated the coastal communities of the Carolinas through heavy rainfall that resulted in massive flooding. Florence was characterized by an abrupt reduction in intensity (Saffir–Simpson category 4 to category 1) just prior to landfall and synoptic-scale interactions that stalled the storm over the Carolinas for several days. We conducted a series of numerical modeling experiments in coupled and uncoupled configurations to examine the impact of sea surface temperature (SST) and ocean waves on storm characteristics. In addition to experiments using a fully coupled atmosphere–ocean–wave model, we introduced the capability of the atmospheric model to modulate wind stress and surface fluxes by ocean waves through data from an uncoupled wave model. We examined these experiments by comparing track, intensity, strength, SST, storm structure, wave height, surface roughness, heat fluxes, and precipitation in order to determine the impacts of resolving ocean conditions with varying degrees of coupling. We found differences in the storm’s intensity and strength, with the best correlation coefficient of intensity (r = 0.89) and strength (r = 0.95) coming from the fully coupled simulations. Further analysis into surface roughness parameterizations added to the atmospheric model revealed differences in the spatial distribution and magnitude of the largest roughness lengths. Adding ocean and wave features to the model further modified the fluxes due to more realistic cooling beneath the storm, which in turn modified the precipitation field. Our experiments highlight significant differences in how air–sea processes impact hurricane modeling. The storm characteristics of track, intensity, strength, and precipitation at landfall are crucial to predictability and forecasting of future landfalling hurricanes.