Dierssen Heidi M.

No Thumbnail Available
Last Name
Dierssen
First Name
Heidi M.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Working Paper
    A modern coastal ocean observing system using data from advanced satellite and in situ sensors – an example
    (NSF/Ocean Research Coordination Network, 2015-06-01) Yoder, James A. ; Davis, Curtiss O. ; Dierssen, Heidi M. ; Muller-Karger, Frank E. ; Mahadevan, Amala ; Pearlman, Jay ; Sosik, Heidi M.
    This report is intended to illustrate and provide recommendations for how ocean observing systems of the next decade could focus on coastal environments using combined satellite and in situ measurements. Until recently, space-based observations have had surface footprints typically spanning hundreds of meters to kilometers. These provide excellent synoptic views for a wide variety of ocean characteristics. In situ observations are instead generally point or linear measurements. The interrelation between space-based and in-situ observations can be challenging. Both are necessary and as sensors and platforms evolve during the next decade, the trend to facilitate interfacing space and in-situ observations must continue and be expanded. In this report, we use coastal observation and analyses to illustrate an observing system concept that combines in situ and satellite observing technologies with numerical models to quantify subseasonal time scale transport of freshwater and its constituents from terrestrial water storage bodies across and along continental shelves, as well as the impacts on some key biological/biogeochemical properties of coastal waters.
  • Article
    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems
    (John Wiley & Sons, 2018-03-06) Muller-Karger, Frank E. ; Hestir, Erin ; Ade, Christiana ; Turpie, Kevin ; Roberts, Dar A. ; Siegel, David A. ; Miller, Robert J. ; Humm, David ; Izenberg, Noam ; Keller, Mary ; Morgan, Frank ; Frouin, Robert ; Dekker, Arnold G. ; Gardner, Royal ; Goodman, James ; Schaeffer, Blake ; Franz, Bryan A. ; Pahlevan, Nima ; Mannino, Antonio ; Concha, Javier A. ; Ackleson, Steven G. ; Cavanaugh, Kyle C. ; Romanou, Anastasia ; Tzortziou, Maria ; Boss, Emmanuel S. ; Pavlick, Ryan ; Freeman, Anthony ; Rousseaux, Cecile S. ; Dunne, John P. ; Long, Matthew C. ; Salas, Eduardo Klein ; McKinley, Galen A. ; Goes, Joachim I. ; Letelier, Ricardo M. ; Kavanaugh, Maria T. ; Roffer, Mitchell ; Bracher, Astrid ; Arrigo, Kevin R. ; Dierssen, Heidi M. ; Zhang, Xiaodong ; Davis, Frank W. ; Best, Benjamin D. ; Guralnick, Robert P. ; Moisan, John R. ; Sosik, Heidi M. ; Kudela, Raphael M. ; Mouw, Colleen B. ; Barnard, Andrew H. ; Palacios, Sherry ; Roesler, Collin S. ; Drakou, Evangelia G. ; Appeltans, Ward ; Jetz, Walter
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.
  • Article
    Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission
    (Elsevier, 2013-04-20) Siegel, David A. ; Behrenfeld, Michael J. ; Maritorena, S. ; McClain, Charles R. ; Antoine, David ; Bailey, S. W. ; Bontempi, P. S. ; Boss, Emmanuel S. ; Dierssen, Heidi M. ; Doney, Scott C. ; Eplee, R. E. ; Evans, R. H. ; Feldman, G. C. ; Fields, Erik ; Franz, Bryan A. ; Kuring, N. A. ; Mengelt, C. ; Nelson, Norman B. ; Patt, F. S. ; Robinson, W. D. ; Sarmiento, Jorge L. ; Swan, C. M. ; Werdell, P. J. ; Westberry, Toby K. ; Wilding, J. G. ; Yoder, James A.
    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.