Mohan Jacqueline E.

No Thumbnail Available
Last Name
Mohan
First Name
Jacqueline E.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2 : reply
    (Ecological Society of America, 2008-02) Mohan, Jacqueline E. ; Ziska, Lewis H. ; Thomas, Richard B. ; Sicher, Richard C. ; George, Kate ; Clark, James S. ; Schlesinger, William H.
  • Preprint
    Root standing crop and chemistry after six years of soil warming in a temperate forest
    ( 2010-02) Zhou, Yumei ; Tang, Jianwu ; Melillo, Jerry M. ; Butler, Sarah M. ; Mohan, Jacqueline E.
    Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after six years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤ 1 mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m-2) lower than in the control area, while the live root standing crops in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and carbon compounds (sugar, starch, hemicellulose, cellulose, and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g-1) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated to both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass, and thus decreases carbon allocation belowground.
  • Article
    Composition and carbon dynamics of forests in northeastern North America in a future, warmer world
    (NRC Research Press, 2009-02-13) Mohan, Jacqueline E. ; Cox, Roger M. ; Iverson, Louis R.
    Increasing temperatures, precipitation extremes, and other anthropogenic influences (pollutant deposition, increasing carbon dioxide) will influence future forest composition and productivity in the northeastern United States and eastern Canada. This synthesis of empirical and modeling studies includes tree DNA evidence suggesting tree migrations since the last glaciation were much slower, at least under postglacial conditions, than is needed to keep up with current and future climate warming. Exceedances of US and Canadian ozone air quality standards are apparent and offset CO2-induced gains in biomass and predispose trees to other stresses. The deposition of nitrogen and sulfate in the northeastern United States changes forest nutrient availability and retention, reduces reproductive success and frost hardiness, causes physical damage to leaf surfaces, and alters performance of forest pests and diseases. These interacting stresses may increase future tree declines and ecosystem disturbances during transition to a warmer climate. Recent modeling work predicts warmer climates will increase suitable habitat (not necessarily actual distribution) for most tree species in the northeastern United States. Species whose habitat is declining in the northeastern United States currently occur in Canadian forests and may expand northward with warming. Paleoecological studies suggest local factors may interact with, even overwhelm, climatic effects, causing lags and thresholds leading to sudden large shifts in vegetation.
  • Article
    Soil warming alters nitrogen cycling in a New England forest : implications for ecosystem function and structure
    (Springer, 2011-10-05) Butler, Sarah M. ; Melillo, Jerry M. ; Johnson, J. E. ; Mohan, Jacqueline E. ; Steudler, Paul A. ; Lux, H. ; Burrows, E. ; Smith, R. M. ; Vario, C. L. ; Scott, Lindsay ; Hill, T. D. ; Aponte, N. ; Bowl, F.
    Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.
  • Preprint
    Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed
    ( 2009-05) Bradford, Mark A. ; Wallenstein, Matthew D. ; Allison, Steven D. ; Treseder, Kathleen K. ; Frey, Serita D. ; Watts, Brian W. ; Davies, Christian A. ; Maddox, Thomas R. ; Melillo, Jerry M. ; Mohan, Jacqueline E. ; Reynolds, James F.
    Hartley et al. question whether reduction in Rmass, under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis cannot alone explain observed responses, and urge caution in the interpretation of the seasonal data.
  • Preprint
    Thermal adaptation of soil microbial respiration to elevated temperature
    ( 2008-07-22) Bradford, Mark A. ; Davies, Christian A. ; Frey, Serita D. ; Maddox, Thomas R. ; Melillo, Jerry M. ; Mohan, Jacqueline E. ; Reynolds, James F. ; Treseder, Kathleen K. ; Wallenstein, Matthew D.
    In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of fast-cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a >15 year soil warming experiment in a mid-latitude forest, we show that the apparent ‘acclimation’ of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature-induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.
  • Article
    Long-term CO2 enrichment of a forest ecosystem : implications for forest regeneration and succession
    (Ecological Society of America, 2007-06) Mohan, Jacqueline E. ; Clark, James S. ; Schlesinger, William H.
    The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest succession. We examined how CO2 enrichment (+200 μL CO2/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the Duke Forest free-air CO2 enrichment (FACE) experiment in North Carolina, USA. We planted 2352 seedlings of 14 species in the low light forest understory and determined effects of elevated CO2 on individual plant growth, survival, and total sample biomass accumulation, an integrator of plant growth and survivorship over time, for six years. We used a hierarchical Bayes framework to accommodate the uncertainty associated with the availability of light and the variability in growth among individual plants. We found that most species did not exhibit strong responses to CO2. Ulmus alata (+21%), Quercus alba (+9.5%), and nitrogen-fixing Robinia pseudoacacia (+230%) exhibited greater mean annual relative growth rates under elevated CO2 than under ambient conditions. The effects of CO2 were small relative to variability within populations; however, some species grew better under low light conditions when exposed to elevated CO2 than they did under ambient conditions. These species include shade-intolerant Liriodendron tulipifera and Liquidambar styraciflua, intermediate-tolerant Quercus velutina, and shade-tolerant Acer barbatum, A. rubrum, Prunus serotina,Ulmus alata, and Cercis canadensis. Contrary to our expectation, shade-intolerant trees did not survive better with CO2 enrichment, and population-scale responses to CO2 were influenced by survival probabilities in low light. CO2 enrichment did not increase rates of sample biomass accumulation for most species, but it did stimulate biomass growth of shade-tolerant taxa, particularly Acer barbatum and Ulmus alata. Our data suggest a small CO2 fertilization effect on tree productivity, and the possibility of reduced carbon accumulation rates relative to today's forests due to changes in species composition.