Thermal adaptation of soil microbial respiration to elevated temperature

Thumbnail Image
Date
2008-07-22
Authors
Bradford, Mark A.
Davies, Christian A.
Frey, Serita D.
Maddox, Thomas R.
Melillo, Jerry M.
Mohan, Jacqueline E.
Reynolds, James F.
Treseder, Kathleen K.
Wallenstein, Matthew D.
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Acclimation
Adaptation
Soil respiration
Thermal biology
Temperature
Carbon cycling
Climate change
Climate warming
Microbial community
CO2
Abstract
In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of fast-cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a >15 year soil warming experiment in a mid-latitude forest, we show that the apparent ‘acclimation’ of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature-induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.
Description
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Ecology Letters 11 (2008): 1316-1327, doi:10.1111/j.1461-0248.2008.01251.x.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name