Frankignoul Claude

No Thumbnail Available
Last Name
Frankignoul
First Name
Claude
ORCID
0000-0001-7038-1839

Search Results

Now showing 1 - 20 of 21
  • Preprint
    Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3
    ( 2011-02-02) Kwon, Young-Oh ; Frankignoul, Claude
    The Atlantic meridional overturning circulation (AMOC) in the last 250 years of the 700-yearlong present-day control integration of the Community Climate System Model version 3 with T85 atmospheric resolution exhibits a red noise-like irregular multi-decadal variability with a persistence longer than 10 years, which markedly contrasts with the preceding ~300 years of very regular and stronger AMOC variability with ~20 year periodicity. The red noise-like multidecadal AMOC variability is primarily forced by the surface fluxes associated with stochastic changes in the North Atlantic Oscillation (NAO) that intensify and shift northward the deep convection in the Labrador Sea. However, the persistence of the AMOC and the associated oceanic anomalies that are directly forced by the NAO forcing does not exceed about 5 years. The additional persistence originates from anomalous horizontal advection and vertical mixing, which generate density anomalies on the continental shelf along the eastern boundary of the subpolar gyre. These anomalies are subsequently advected by the mean boundary current into the northern part of the Labrador Sea convection region, reinforcing the density changes directly forced by the NAO. As no evidence was found of a clear two-way coupling with the atmosphere, the multi-decadal AMOC variability in the last 250 years of the integration is an ocean-only response to stochastic NAO forcing with a delayed positive feedback caused by the changes in the horizontal ocean circulation.
  • Article
    Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation
    (American Meteorological Society, 2011-02-01) Frankignoul, Claude ; Sennechael, Nathalie ; Kwon, Young-Oh ; Alexander, Michael A.
    The meridional shifts of the Oyashio Extension (OE) and of the Kuroshio Extension (KE), as derived from high-resolution monthly sea surface temperature (SST) anomalies in 1982–2008 and historical temperature profiles in 1979–2007, respectively, are shown based on lagged regression analysis to significantly influence the large-scale atmospheric circulation. The signals are independent from the ENSO teleconnections, which were removed by seasonally varying, asymmetric regression onto the first three principal components of the tropical Pacific SST anomalies. The response to the meridional shifts of the OE front is equivalent barotropic and broadly resembles the North Pacific Oscillation/western Pacific pattern in a positive phase for a northward frontal displacement. The response may reach 35 m at 250 hPa for a typical OE shift, a strong sensitivity since the associated SST anomaly is 0.5 K. However, the amplitude, but not the pattern or statistical significance, strongly depends on the lag and an assumed 2-month atmospheric response time. The response is stronger during fall and winter and when the front is displaced southward. The response to the northward KE shifts primarily consists of a high centered in the northwestern North Pacific and hemispheric teleconnections. The response is also equivalent barotropic, except near Kamchatka, where it tilts slightly westward with height. The typical amplitude is half as large as that associated with OE shifts.
  • Article
    Wintertime atmospheric response to North Atlantic Ocean circulation variability in a climate model
    (American Meteorological Society, 2015-10-01) Frankignoul, Claude ; Gastineau, Guillaume ; Kwon, Young-Oh
    Maximum covariance analysis of a preindustrial control simulation of the NCAR Community Climate System Model, version 4 (CCSM4), shows that a barotropic signal in winter broadly resembling a negative phase of the North Atlantic Oscillation (NAO) follows an intensification of the Atlantic meridional overturning circulation (AMOC) by about 7 yr. The delay is due to the cyclonic propagation along the North Atlantic Current (NAC) and the subpolar gyre of a SST warming linked to a northward shift and intensification of the NAC, together with an increasing SST cooling linked to increasing southward advection of subpolar water along the western boundary and a southward shift of the Gulf Stream (GS). These changes result in a meridional SST dipole, which follows the AMOC intensification after 6 or 7 yr. The SST changes were initiated by the strengthening of the western subpolar gyre and by bottom torque at the crossover of the deep branches of the AMOC with the NAC on the western flank of the Mid-Atlantic Ridge and the GS near the Tail of the Grand Banks, respectively. The heat flux damping of the SST dipole shifts the region of maximum atmospheric transient eddy growth southward, leading to a negative NAO-like response. No significant atmospheric response is found to the Atlantic multidecadal oscillation (AMO), which is broadly realistic but shifted south and associated with a much weaker meridional SST gradient than the AMOC fingerprint. Nonetheless, the wintertime atmospheric response to the AMOC shows some similarity with the observed response to the AMO, suggesting that the ocean–atmosphere interactions are broadly realistic in CCSM4.
  • Article
    Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season
    (American Meteorological Society, 2016-03-23) Revelard, Adèle ; Frankignoul, Claude ; Sennechael, Nathalie ; Kwon, Young-Oh
    The atmospheric response to the Kuroshio Extension (KE) variability during 1979–2012 is investigated using a KE index derived from sea surface height measurements and an eddy-resolving ocean general circulation model hindcast. When the index is positive, the KE is in the stable state, strengthened and shifted northward, with lower eddy kinetic energy, and the Kuroshio–Oyashio Extension (KOE) region is anomalously warm. The reverse holds when the index is negative. Regression analysis shows that there is a coherent atmospheric response to the decadal KE fluctuations between October and January. The KOE warming generates an upward surface heat flux that leads to local ascending motions and a northeastward shift of the zones of maximum baroclinicity, eddy heat and moisture fluxes, and the storm track. The atmospheric response consists of an equivalent barotropic large-scale signal, with a downstream high and a low over the Arctic. The heating and transient eddy anomalies excite stationary Rossby waves that propagate the signal poleward and eastward. There is a warming typically exceeding 0.6 K at 900 hPa over eastern Asia and western United States, which reduces the snow cover by 4%–6%. One month later, in November–February, a high appears over northwestern Europe, and the hemispheric teleconnection bears some similarity with the Arctic Oscillation. Composite analysis shows that the atmospheric response primarily occurs during the stable state of the KE, while no evidence of a significant large-scale atmospheric response is found in the unstable state. Arguments are given to explain this strong asymmetry.
  • Article
    Investigating the local atmospheric response to a realistic shift in the Oyashio Sea surface Temperature Front
    (American Meteorological Society, 2015-02-01) Smirnov, Dimitry ; Newman, Matthew ; Alexander, Michael A. ; Kwon, Young-Oh ; Frankignoul, Claude
    The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
  • Article
    Estimation of the SST response to anthropogenic and external forcing and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation
    (American Meteorological Society, 2017-11-16) Frankignoul, Claude ; Gastineau, Guillaume ; Kwon, Young-Oh
    Two large ensembles (LEs) of historical climate simulations are used to compare how various statistical methods estimate the sea surface temperature (SST) changes due to anthropogenic and other external forcing, and how their removal affects the internally generated Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the SST footprint of the Atlantic meridional overturning circulation (AMOC). Removing the forced SST signal by subtracting the global mean SST (GM) or a linear regression on it (REGR) leads to large errors in the Pacific. Multidimensional ensemble empirical mode decomposition (MEEMD) and quadratic detrending only efficiently remove the forced SST signal in one LE, and cannot separate the short-term response to volcanic eruptions from natural SST variations. Removing a linear trend works poorly. Two methods based on linear inverse modeling (LIM), one where the leading LIM mode represents the forced signal and another using an optimal perturbation filter (LIMopt), perform consistently well. However, the first two LIM modes are sometimes needed to represent the forced signal, so the more robust LIMopt is recommended. In both LEs, the natural AMO variability seems largely driven by the AMOC in the subpolar North Atlantic, but not in the subtropics and tropics, and the scatter in the AMOC–AMO correlation is large between individual ensemble members. In three observational SST reconstructions for 1900–2015, linear and quadratic detrending, MEEMD, and GM yield somewhat different AMO behavior, and REGR yields smaller PDO amplitudes. Based on LIMopt, only about 30% of the AMO variability is internally generated, as opposed to more than 90% for the PDO. The natural SST variability contribution to global warming hiatus is discussed.
  • Article
    On the Statistical Estimation of Asymmetrical Relationship Between Two Climate Variables
    (American Geophysical Union, 2022-10-10) Frankignoul, Claude ; Kwon, Young‐Oh
    Two simple methods commonly used to detect asymmetry in climate research, composite analysis, and asymmetric linear regression, are discussed and compared using mathematical derivation and synthetic data. Asymmetric regression is shown to provide unbiased estimates only when the respective mean of positive and negative events is removed from both independent and dependent variables (i.e., non‐zero y‐intercepts). Composite analysis always provides biased results and strongly underestimates the asymmetry, albeit less so for very larger thresholds, which cannot be used with limited observational data. Hence, the unbiased asymmetric regression should be used, even though uncertainties can be large for small samples. Differences in estimated asymmetry are illustrated for the sea surface temperature and winter sea level pressure signals associated with El Niño and La Niña.
  • Article
    Understanding the Drivers of Atlantic Multidecadal Variability Using a Stochastic Model Hierarchy
    (American Meteorological Society, 2023-01-23) Liu, Glenn ; Kwon, Young-Oh ; Frankignoul, Claude ; Lu, Jian
    The relative importance of ocean and atmospheric dynamics in generating Atlantic multidecadal variability (AMV) remains an open question. Comparisons between climate models with a slab ocean (SLAB) and fully dynamic ocean components (FULL) are often used to explore this question, but cannot reveal how individual ocean processes generate these differences. We build a hierarchy of physically interpretable stochastic models to investigate the contribution of two upper-ocean processes to AMV: the role of seasonal variation and mixed-layer entrainment. This interpretability arises from the stochastic model’s simplified representation of sea surface temperature (SST), considering only the local upper-ocean response to white-noise atmospheric forcing and its impact on surface heat exchange. We focus on understanding differences between SLAB and FULL non-eddy-resolving preindustrial control simulations of the Community Earth System Model 1 (CESM), and estimate the stochastic model parameters from each respective simulation. Despite its simplicity, the stochastic model reproduces temporal characteristics of SST variability in the SPG, including reemergence, seasonal-to-interannual persistence, and power spectra. Furthermore, the unrealistically persistent SST of the CESM-SLAB ocean simulation is reproduced in the equivalent stochastic model configuration where the mixed-layer depth (MLD) is constant. The stochastic model also reveals that vertical entrainment primarily damps SST variability, thus explaining why SLAB exhibits larger SST variance than FULL. The stochastic model driven by temporally stochastic, spatially coherent forcing patterns reproduces the canonical AMV pattern. However, the amplitude of low-frequency variability remains underestimated, suggesting a role for ocean dynamics beyond entrainment.
  • Article
    Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability
    (American Geophysical Union, 2022-10-18) Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong
    Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip.
  • Article
    Impacts of Arctic sea ice on cold season atmospheric variability and trends estimated from observations and a multimodel large ensemble
    (American Meteorological Society, 2021-09-24) Liang, Yu-Chiao ; Frankignoul, Claude ; Kwon, Young-Oh ; Gastineau, Guillaume ; Manzini, Elisa ; Danabasoglu, Gokhan ; Suo, Lingling ; Yeager, Stephen G. ; Gao, Yongqi ; Attema, Jisk J. ; Cherchi, Annalisa ; Ghosh, Rohit ; Matei, Daniela ; Mecking, Jennifer V. ; Tian, Tian ; Zhang, Ying
    To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
  • Article
    An observational estimate of the direct response of the cold-season atmospheric circulation to the Arctic Sea ice loss
    (American Meteorological Society, 2020-04-06) Simon, Amélie ; Frankignoul, Claude ; Gastineau, Guillaume ; Kwon, Young-Oh
    The direct response of the cold-season atmospheric circulation to the Arctic sea ice loss is estimated from observed sea ice concentration (SIC) and an atmospheric reanalysis, assuming that the atmospheric response to the long-term sea ice loss is the same as that to interannual pan-Arctic SIC fluctuations with identical spatial patterns. No large-scale relationship with previous interannual SIC fluctuations is found in October and November, but a negative North Atlantic Oscillation (NAO)/Arctic Oscillation follows the pan-Arctic SIC fluctuations from December to March. The signal is field significant in the stratosphere in December, and in the troposphere and tropopause thereafter. However, multiple regressions indicate that the stratospheric December signal is largely due to concomitant Siberian snow-cover anomalies. On the other hand, the tropospheric January–March NAO signals can be unambiguously attributed to SIC variability, with an Iceland high approaching 45 m at 500 hPa, a 2°C surface air warming in northeastern Canada, and a modulation of blocking activity in the North Atlantic sector. In March, a 1°C northern Europe cooling is also attributed to SIC. An SIC impact on the warm Arctic–cold Eurasia pattern is only found in February in relation to January SIC. Extrapolating the most robust results suggests that, in the absence of other forcings, the SIC loss between 1979 and 2016 would have induced a 2°–3°C decade−1 winter warming in northeastern North America and a 40–60 m decade−1 increase in the height of the Iceland high, if linearity and perpetual winter conditions could be assumed.
  • Article
    Quantification of the arctic sea ice-driven atmospheric circulation variability in coordinated large ensemble simulations
    (American Geophysical Union, 2019-12-26) Liang, Yu‐Chiao ; Kwon, Young-Oh ; Frankignoul, Claude ; Danabasoglu, Gokhan ; Yeager, Stephen G. ; Cherchi, Annalisa ; Gao, Yongqi ; Gastineau, Guillaume ; Ghosh, Rohit ; Matei, Daniela ; Mecking, Jennifer V. ; Peano, Daniele ; Suo, Lingling ; Tian, Tian
    A coordinated set of large ensemble atmosphere‐only simulations is used to investigate the impacts of observed Arctic sea ice‐driven variability (SIDV) on the atmospheric circulation during 1979–2014. The experimental protocol permits separating Arctic SIDV from internal variability and variability driven by other forcings including sea surface temperature and greenhouse gases. The geographic pattern of SIDV is consistent across seven participating models, but its magnitude strongly depends on ensemble size. Based on 130 members, winter SIDV is ~0.18 hPa2 for Arctic‐averaged sea level pressure (~1.5% of the total variance), and ~0.35 K2 for surface air temperature (~21%) at interannual and longer timescales. The results suggest that more than 100 (40) members are needed to separate Arctic SIDV from other components for dynamical (thermodynamical) variables, and insufficient ensemble size always leads to overestimation of SIDV. Nevertheless, SIDV is 0.75–1.5 times as large as the variability driven by other forcings over northern Eurasia and Arctic.
  • Technical Report
    On the internal wave variability during the Internal Wave Experiment (IWEX)
    (Woods Hole Oceanographic Institution, 1981-04) Frankignoul, Claude ; Joyce, Terrence M.
    The relation between internal wave variability and larger and smaller scales of motion is investigated, using the IWEX data set. To investigate the role of internal waves in the vertical diffusion of large scale momentum, the time variability of the vertical flux of horizontal internal wave momentum (estimated from temperature and current data) is compared to that of the mean vertical shear. It is found that internal waves cannot cause a vertical viscosity as large as proposed by Müller (1976), but that the data are too noisy to detect a possible wave‐induced viscosity in absolute value of the order of 10−2 m2 s−1 or less. Similarities in the time behavior of the total internal wave energy and that of the square mean vertical shear suggest that some kind of dynamical coupling exists between internal waves and larger scale flows. There is some evidence that the level of temperature finestructure activity also varies in a related way. An analysis of CTD station data taken during Mode demonstrates the mappability of the finestructure activity, and again suggests a relation with the geostrophic eddy flow.
  • Article
    The influence of the AMOC variability on the atmosphere in CCSM3
    (American Meteorological Society, 2013-12-15) Frankignoul, Claude ; Gastineau, Guillaume ; Kwon, Young-Oh
    The influence of the Atlantic meridional overturning circulation (AMOC) variability on the atmospheric circulation is investigated in a control simulation of the NCAR Community Climate System Model, version 3 (CCSM3), where the AMOC evolves from an oscillatory regime into a red noise regime. In the latter, an AMOC intensification is followed during winter by a positive North Atlantic Oscillation (NAO). The atmospheric response is robust and controlled by AMOC-driven SST anomalies, which shift the heat release to the atmosphere northward near the Gulf Stream/North Atlantic Current. This alters the low-level atmospheric baroclinicity and shifts the maximum eddy growth northward, affecting the storm track and favoring a positive NAO. The AMOC influence is detected in the relation between seasonal upper-ocean heat content or SST anomalies and winter sea level pressure. In the oscillatory regime, no direct AMOC influence is detected in winter. However, an upper-ocean heat content anomaly resembling the AMOC footprint precedes a negative NAO. This opposite NAO polarity seems due to the southward shift of the Gulf Stream during AMOC intensification, displacing the maximum baroclinicity southward near the jet exit. As the mode has somewhat different patterns when using SST, the wintertime impact of the AMOC lacks robustness in this regime. However, none of the signals compares well with the observed influence of North Atlantic SST anomalies on the NAO because SST is dominated in CCSM3 by the meridional shifts of the Gulf Stream/North Atlantic Current that covary with the AMOC. Hence, although there is some potential climate predictability in CCSM3, it is not realistic.
  • Article
    Autumn Arctic Pacific sea ice dipole as a source of predictability for subsequent spring Barents Sea ice condition
    (American Meteorological Society, 2020-12-23) Liang, Yu-Chiao ; Kwon, Young-Oh ; Frankignoul, Claude
    This study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations (r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.
  • Preprint
    Formation and export of deep water in the Labrador and Irminger Seas in a GCM
    ( 2006-12-13) Deshayes, Julie ; Frankignoul, Claude ; Drange, Helge
    The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.
  • Article
    Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction : a review
    (American Meteorological Society, 2010-06-15) Kwon, Young-Oh ; Alexander, Michael A. ; Bond, Nicholas A. ; Frankignoul, Claude ; Nakamura, Hisashi ; Qiu, Bo ; Thompson, LuAnne
    Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.
  • Article
    Mechanisms of multidecadal Atlantic meridional overturning circulation variability diagnosed in depth versus density space
    (American Meteorological Society, 2014-12-15) Kwon, Young-Oh ; Frankignoul, Claude
    Multidecadal variability of the Atlantic meridional overturning circulation (AMOC) is examined based on a comparison of the AMOC streamfunctions in depth and in density space, in a 700-yr present-day control integration of the fully coupled Community Climate System Model, version 3. The commonly used depth-coordinate AMOC primarily exhibits the variability associated with the deep equatorward transport that follows the changes in the Labrador Sea deep water formation. On the other hand, the density-based AMOC emphasizes the variability associated with the subpolar gyre circulation in the upper ocean leading to the changes in the Labrador Sea convection. Combining the two representations indicates that the ~20-yr periodicity of the AMOC variability in the first half of the simulation is primarily due to an ocean-only mode resulting from the coupling of the deep equatorward flow and the upper ocean gyre circulation near the Gulf Stream and North Atlantic Current. In addition, the density-based AMOC reveals a gradual change in the deep ocean associated with cooling and increased density, which is likely responsible for the transition of AMOC variability from strong ~20-yr oscillations to a weaker red noise–like multidecadal variability.
  • Article
    A multivariate estimate of the cold season atmospheric response to North Pacific SST variability
    (American Meteorological Society, 2018-03-12) Revelard, Adèle ; Frankignoul, Claude ; Kwon, Young-Oh
    The Generalized Equilibrium Feedback Analysis (GEFA) is used to distinguish the influence of the Oyashio Extension (OE) and the Kuroshio Extension (KE) variability on the atmosphere from 1979 to 2014 from that of the main SST variability modes, using seasonal mean anomalies. Remote SST anomalies are associated with each single oceanic regressor, but the multivariate approach efficiently confines their SST footprints. In autumn [October–December (OND)], the OE meridional shifts are followed by a North Pacific Oscillation (NPO)-like signal. The OE influence is not investigated in winter [December–February (DJF)] because of multicollinearity, but a robust response with a strong signal over the Bering Sea is found in late winter/early spring [February–April (FMA)], a northeastward strengthening of the Aleutian low following a northward OE shift. A robust response to the KE variability is found in autumn, but not in winter and late winter when the KE SST footprint becomes increasingly small and noisy as regressors are added in GEFA. In autumn, a positive PDO is followed by a northward strengthening of the Aleutian low and a southward shift of the storm track in the central Pacific, reflecting the surface heat flux footprint in the central Pacific. In winter, the PDO shifts the maximum baroclinicity and storm track southward, the response strongly tilts westward with height in the North Pacific, and there is a negative NAO-like teleconnection. In late winter, the North Pacific NPO-like response to the PDO interferes negatively with the response to the OE and is only detected when the OE is represented in GEFA. A different PDO influence on the atmospheric circulation is found from 1958 to 1977.
  • Preprint
    The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation
    ( 2008-12) Frankignoul, Claude ; Deshayes, Julie ; Curry, Ruth G.
    An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland-Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.