Seewald Jeffrey S.

No Thumbnail Available
Last Name
First Name
Jeffrey S.

Search Results

Now showing 1 - 20 of 39
  • Preprint
    Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea
    ( 2010-10-29) Reeves, Eoghan P. ; Seewald, Jeffrey S. ; Saccocia, Peter J. ; Bach, Wolfgang ; Craddock, Paul R. ; Shanks, Wayne C. ; Sylva, Sean P. ; Walsh, Emily ; Pichler, Thomas ; Rosner, Martin
    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or neararc crustal settings remain poorly constrained despite growing evidence for extensive magmatichydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273–285°C) and major element compositions, low dissolved CO2 concentrations (4.4mmol/kg) and high measured pH (4.2–4.9 at 25°C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358°C) fluid. All PACMANUS fluids are characterized by negative δDH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25°C) values (~2.6 to 2.7), high endmember CO2 (up to 274 mmol/kg) and negative δ34SH2S values (down to -2.7‰) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1‰ to -2.3‰) than Vienna Woods (-5.2‰ to -5.7‰), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater of seawater ingress into the upflow zone. Consistently high measured Mg concentrations, trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (≤80°C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.
  • Preprint
    Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions
    ( 2006-01-12) McCollom, Thomas M. ; Seewald, Jeffrey S.
    Although it is widely believed that production of organic compounds by Fischer-Tropsch synthesis and related processes occurs in many geologic environments, unambiguous identification of compounds with an abiotic origin in natural samples has been hampered by a lack of means to discriminate between abiotic compounds and organic matter from biological sources. While isotopic compositions might provide a means to discriminate between biologic and non-biologic sources of organic matter, there are few data presently available to constrain the isotopic composition of compounds produced by abiotic processes in geologic systems. Here, we report results of laboratory experiments conducted to evaluate the isotopic composition of organic compounds synthesized abiotically under hydrothermal conditions. We find the organic products are depleted in 13C to a degree typically ascribed to biological processes, indicating that carbon isotopic composition may not be a particularly effective diagnostic means to differentiate between biologic and non-biologic sources. Furthermore, our results suggest that the isotopic compositions of reduced carbon compounds found in many ancient rocks that have heretofore been attributed to biological sources could be consistent with an abiotic origin in a hydrothermal setting.
  • Preprint
    Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins
    ( 2010-05-02) Craddock, Paul R. ; Bach, Wolfgang ; Seewald, Jeffrey S. ; Rouxel, Olivier J. ; Reeves, Eoghan P. ; Tivey, Margaret K.
    Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite–normalized (REEN) distribution patterns (LaN/SmN ~ 0.6 – 11; LaN/YbN ~ 0.6 – 71; EuN/Eu*N ~ 1 – 55). REEN distribution patterns in different vent fluids range from light–REE enriched, to mid– and heavy–REE enriched, to flat, and have a range of positive Eu–anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid–ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near seafloor mixing between high–temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.
  • Preprint
    Experimental investigation of single carbon compounds under hydrothermal conditions
    ( 2005-09-08) Seewald, Jeffrey S. ; Zolotov, Mikhail Yu. ; McCollom, Thomas M.
    The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO2 + H2 = CO + H2O). Aqueous fluids containing added CO2, CO, HCOOH, NaHCO3, NaHCOO, and H2 were heated at 150, 200, and 300°C and 350 bar in flexible cell hydrothermal apparatus, and the abundance of carbon compounds were monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO2 to CH3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH3OH to CH4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable equilibrium. Reaction of CO2 to form CO involves a two-step process in which CO2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 x 106 s-1 and an activation energy of 102 KJ mol-1 were retrieved from the experimental results for the oxidation of CO to CO2. Reactions rates amongst single carbon compounds during the experiments suggests SCO2 (CO2 + HCO3- + CO3=), CO, SHCOOH (HCOOH + HCOO-), and CH3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions, which in turn may influence the likelihood for abiotic synthesis via Fischer-Tropsch-type processes, is strongly dependent on temperature, the total carbon content of the fluid, and host-rock lithology. If crustal residence times following the mixing of high-temperature hydrothermal fluids with cool seawater are sufficiently long, reequilibration of aqueous carbon can result in the generation of additional reduced carbon species such as HCOOH and CH3OH and the consumption of H2. The present study suggests that abiotic reactions involving aqueous carbon compounds in hydrothermal systems are sufficiently rapid to influence metabolic pathways utilized by organisms that inhabit vent environments.
  • Preprint
    Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions
    ( 2011-03-10) Reeves, Eoghan P. ; Seewald, Jeffrey S. ; Sylva, Sean P.
    To investigate the extent of hydrogen isotope (2H and 1H) exchange between hydrocarbons and water under hydrothermal conditions, we performed experiments heating C1–C5 n-alkanes in aqueous solutions of varying initial 2H/1H ratios in the presence of a pyrite-pyrrhotite-magnetite redox buffer at 323ºC and 35–36MPa. Extensive and reversible incorporation of water-derived hydrogen into C2–C5 n-alkanes was observed on timescales of months. In contrast, comparatively minor exchange was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding n-alkenes with H2 derived from the disproportionation of water. Rates of δ2H variation in C3+ n-alkanes decreased with time, a trend that is consistent with an asymptotic approach to steady-state isotopic compositions regulated by alkane-water isotopic equilibrium. Substantially slower δ2H variation was observed for ethane relative to C3–C5 n-alkanes, suggesting that the greater stability of C3+ alkenes and isomerization reactions may dramatically enhance rates of 2H/1H exchange in C3+ n-alkanes. Thus, in reducing aqueous environments, reversible reaction of alkenes and their corresponding alkanes facilitates rapid 2H/1H exchange between alkyl- and water-bound hydrogen on relatively short geological timescales at elevated temperatures and pressures. The proximity of some thermogenic and purported abiogenic alkane δ2H values to those predicted for equilibrium 2H/1H fractionation with ambient water suggests that this process may regulate the δ2H signatures of some naturally occurring hydrocarbons.
  • Article
    Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins
    (Public Library of Science, 2013-12-19) Bernaldo de Quirós, Yara ; Seewald, Jeffrey S. ; Sylva, Sean P. ; Greer, William ; Niemeyer, Misty E. ; Bogomolni, Andrea L. ; Moore, Michael J.
    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis.
  • Article
    The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
    (European Geosciences Union, 2022-09-15) Bentley, Jeremy N. ; Ventura, Gregory T. ; Walters, Clifford C. ; Sievert, Stefan M. ; Seewald, Jeffrey S.
    The diversity and relative abundances of tetraether lipids produced by archaea and bacteria in soils and sediments are increasingly used to assess environmental change. For instance, the TetraEther indeX of 86 carbon atoms (TEX86), based on archaeal isoprenoidal glycerol dialkyl glycerol tetraether (iGDGT) lipids, is frequently applied to reconstruct past sea-surface temperatures (SSTs). Yet, it is unknown how the ratio fully responds to environmental and/or geochemical variations and if the produced signals are largely the adaptive response by Thaumarchaeota to oceanographic effects associated with climate or seasonal temperature changes in the upper water column. We present the results of a four push-core transect study of surface sediments collected along an environmental gradient at the Cathedral Hill hydrothermal-vent system in Guaymas Basin, Gulf of California. The transect crosses a region where advecting hydrothermal fluids reach 155 ∘C within the upper 21 cm below the seafloor (cm b.s.f.) close to the vent center to near-ambient conditions at the vent periphery. The recovered iGDGTs closest to the vent center experienced high rates of turnover with up to 94 % of the lipid pool being lost within the upper 21 cm b.s.f. Here, we show that the turnover is non-selective across TEX86 GDGT lipids and does not affect the ratio independently. However, as evident by TEX86 ratios being highly correlated to the Cathedral Hill vent sediment porewater temperatures (R2=0.84), the ratio can be strongly impacted by the combination of severe lipid loss coupled with the addition of in situ iGDGT production from archaeal communities living in the vent sediments. The resulting overprint produces absolute temperature offsets of up to 4 ∘C based on the TEX calibration relative to modern climate records of the region. The overprint is also striking given the flux of iGDGTs from the upper water column is estimated to be ∼ 93 % of the combined intact polar lipid (IPL) and core GDGT lipid pool initially deposited on the seafloor. A model to correct the overprint signal using IPLs is therefore presented that can similarly be applied to all near-surface marine sediment systems where calibration models or climate reconstructions are made based on the TEX86 measure.
  • Article
    Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions
    (National Academy of Sciences, 2019-09-03) Klein, Frieder ; Grozeva, Niya G. ; Seewald, Jeffrey S.
    The conditions of methane (CH4) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H2) and CH4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH4(g) and H2(g) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H2O. The generation of molecular H2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH4. Once formed, CH4(g) and H2(g) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH4 and H2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system.
  • Article
    Application of B, mg, li, and sr isotopes in acid-sulfate vent fluids and volcanic rocks as tracers for fluid-rock interaction in back-arc hydrothermal systems
    (American Geophysical Union, 2019-11-15) Wilckens, Frederike K. ; Reeves, Eoghan P. ; Bach, Wolfgang ; Seewald, Jeffrey S. ; Kasemann, Simone A.
    The Manus Basin hosts a broad range of vent fluid compositions typical for arc and back‐arc settings, ranging from black smoker to acid‐sulfate styles of fluid venting, as well as novel intermediate temperature and composition “hybrid” smokers. We investigated B, Li, Mg, and Sr concentrations and isotopic compositions of these different fluid types as well as of fresh and altered rocks from the same study area to understand what controls their compositional variability. In particular, the formation of acid‐sulfate and hybrid smoker fluids is still poorly understood, and their high Mg concentrations are explained either by dissolution of Mg‐bearing minerals in the basement or by mixing between unmodified seawater and magmatic fluids. Mg isotope ratios of the acid‐sulfate fluids from the Manus Basin are seawater‐like, which supports the idea that acid‐sulfate fluids in this study area predominantly form by mixing between unmodified seawater and a Mg‐free magmatic fluid. Changes in the B, Li, and Sr isotope ratios relative to seawater indicate water‐rock interaction in all acid‐sulfate fluids. Further, the combination of δ7Li with B concentrations of the same fluids links changes in δ7Li to changes in (1) basement alteration, (2) water‐to‐rock ratios during water‐rock interaction, and/or (3) the reaction temperature. These isotope systems, thus, allow tracing of basement composition and acid‐sulfate‐driven alteration of the back‐arc crust and help increase our understanding of hydrothermal fluid‐rock interactions and the behavior of fluid‐mobile elements.
  • Preprint
    Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise
    ( 2010-06-24) German, Christopher R. ; Bowen, Andrew D. ; Coleman, Max ; Honig, D. L. ; Huber, Julie A. ; Jakuba, Michael V. ; Kinsey, James C. ; Kurz, Mark D. ; Leroy, S. ; McDermott, Jill M. ; Mercier de Lepinay, B. ; Nakamura, Ko-ichi ; Seewald, Jeffrey S. ; Smith, J. L. ; Sylva, Sean P. ; Van Dover, Cindy L. ; Whitcomb, Louis L. ; Yoerger, Dana R.
    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global Mid Ocean Ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultra-slow spreading ridges which were the last to be demonstrated to host high-temperature venting, but may host systems particularly relevant to pre-biotic chemistry and the origins of life. Here we report first evidence for diverse and very deep hydrothermal vents along the ~110 km long, ultra-slow spreading Mid-Cayman Rise. Our data indicate that the Mid- Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultra-mafic systems and, at ~5000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent-types identified here and their relative geographic isolation make the Mid-Cayman Rise unique in the oceans. These new sites offer prospects for: an expanded range of vent-fluid compositions; varieties of abiotic organic chemical synthesis and extremophile microorganisms; and unparalleled faunal biodiversity - all in close proximity.
  • Working Paper
    Manus 2006 : hydrothermal systems in the Eastern Manus Basin: fluid chemistry and magnetic structure as guides to subseafloor processes
    (Woods Hole Oceanographic Institution, 2006) Tivey, Maurice A. ; Bach, Wolfgang ; Seewald, Jeffrey S. ; Tivey, Margaret K. ; Vanko, David A.
    The hydrothermal systems in the Manus Basin of Papua New Guinea (PNG) were comprehensively investigated through a combination of sampling and mapping using the Remotely-Operated Vehicle (ROV) Jason, the autonomous underwater vehicle (AUV) ABE (Autonomous Benthic Explorer) and ship-based CTD work and multi-beam bathymetric mapping using the RV Melville. The objectives of the cruise (July 21st to Sept. 1st, 2006) were to identify the tectonic/geologic settings of the vent systems, examine the interactions of seawater with felsic rocks that constitute the high silica end-member range of seafloor basement compositions, determine the extent of volatile magmatic inputs into these systems and to examine the evolution of hydrothermal activity through time. The first 10-day portion of the cruise was funded by Nautilus Minerals in a collaborative research effort to examine the Manus Spreading Center and the Vienna Woods basalt-hosted hydrothermal vent systems. The second 32-day portion of the cruise, funded by the National Science Foundation (NSF), focused on the felsic-hosted hydrothermal systems of the PACMANUS (Papua New Guinea – Australia – Canada Manus) vents drilled by the Ocean Drilling Program (ODP) in 2000 and the nearby seafloor volcano vent systems of Desmos and SuSu Knolls. Nautilus Minerals generously funded the add-on use of ABE throughout the NSF program allowing for high resolution mapping to be completed on all the major vent sites within the eastern Manus Basin. A total of 30 ROV dives (497 operational hours) were completed collecting 198 vent sulfides, 83 altered substrate and 43 fresh lava samples along with 104 black, gray and clear fluid samples using gastight and major samplers. ABE successfully completed 14 high resolution bathymetric, CTD and magnetic field mapping dives covering a total of 364 line km of seafloor. We located and mapped in detail the Vienna Woods and nearby Tufar-2 and -3 vent areas on Manus Spreading Center documenting the strong tectonic control on the distribution of the vent systems and the presence of reduced magnetization i.e. “magnetic burnholes”, that help define the lateral extent of the vent fields. The Vienna Woods vent systems (273°-285°C) form treetrunk- like chimneys 5-15 m tall, that emit black to gray fluids with pH and compositions similar to other documented midocean ridge (MOR) systems like the East Pacific Rise. At PACMANUS, high-resolution mapping by ABE reveals a distinctive seafloor morphology associated with dacitic lava flows along with discrete magnetic burnholes associated with the active venting systems of Roman Ruins, Satanic Mills, Snowcap, Tsukushi and a new vigorous vent system discovered southeast of the Satanic Mills area named Fenway. Another vent field in its waning stages was also discovered ~8 km northeast of PACMANUS on the Northeast Pual Ridge. At PACMANUS, the 40 m diameter Fenway mound hosts outcrops of massive anhydrite on the seafloor beneath the sulfide chimneys, a rare occurrence as anhydrite is unstable at ambient seafloor conditions. Fenway is also boiling (356°C, 172 bar) with two-phase fluid producing a ”flashing” phenomenon when the Jason lights illuminated the vent orifices. The five PACMANUS vents (271° – 356°C) have ubiquitous low pH (2.3 to 2.8) relative to Vienna Woods and typical MOR fluids, presumably reflecting water-rock reaction with the felsic hosted lava, input of magmatic volatiles and the subsurface deposition of metal sulfides. We investigated two strongly magmatically influenced vent systems associated with seafloor volcanoes. Desmos is a breached caldera with white smokers (70°-115°C) that are highly acidic (pH 1 – 1.5) and sulfur lava flows. SuSu Knolls and the adjacent Suzette mound (Solwara-1 of Nautilus Minerals) were mapped in detail and sampled intensively. Hydrothermal activity at SuSu Knolls showed a remarkable range from boiling black smokers to white sulfur-rich fluids, native sulfur flows and massive anhydrite outcrops. Vent fluids from North Su (48° – 325°C) are 2 characterized by a measured pH of 0.87, more than an order of magnitude more acidic than any deep-sea vent fluid sampled to date. Many of the low pH fluids sampled at North Su and Desmos were actively precipitating native sulfur creating thick plumes of dense white smoke. In general, sampled fluids show a considerable range in pH and gas contents, sometimes within individual hydrothermal fields. The pronounced variability of fluid chemistry within 10’s to 100’s of m at North Su is probably unparalleled in systems studied to date. The most plausible explanation for the observed variability is that different fluid-rock reaction pathways are expressed in regimes of variable magmatic volatile input and extent of subsurface cooling. This hypothesis is supported by the distribution of alteration types at the seafloor, where the occurrence of advanced argillic alteration - that relates to interactions with acid-sulfate waters such as sampled at Desmos and North Su – is patchy and spatially confined to patches of active (Desmos, North Su) and past (Snowcap) venting of such fluids. In relationship to the ODP drilling results at PACMANUS we identified and sampled examples of advanced argillic rock alteration similar to that seen in the drill core. Good examples came from Snowcap and from the North Su pillar. We sampled highly clay-altered basement from just underneath extinct chimney complexes at two locations in the Satanic Mills hydrothermal field. Both samples have dense networks of sulfide veins and may represent the stockwork or feeder zone through which hydrothermal fluids rise up to the seafloor. These samples, in addition to the other altered rock types recovered, will provide useful stepping stones in bridging the knowledge gap between the extensive surface sampling now accomplished and the basement rocks recovered by ODP, where coring was almost nil shallower than 40 m subseafloor depth. Overall, the quality and quantity of solid and fluid samples that can be put in a direct geochemical context is remarkably high. This unique dataset encompasses a broad range of geological environments that includes hydrothermal activity in basalt-hosted oceanic style spreading centers to hydrothermal systems associated with arc-style volcanism. For the first time, alteration assemblages that are commonly observed in drillcore and outcrop on land have been observed in the aqueous environment responsible for their formation.
  • Article
    Compositional and isotopic characteristics of hydrocarbons generated by a hydrothermal experiment simulating seafloor sediment alteration stepwise heating from 275 to 361 degrees C at 30 MPa
    (The Geochemical Society of Japan, 2019-08-08) Kawagucci, Shinsuke ; Seewald, Jeffrey S.
    We conducted a laboratory hydrothermal experiment that simulated generation of low molecular-weight hydrocarbons during seafloor sediment alteration at 275–361°C and 30 MPa. The abundance and carbon and hydrogen stable isotope composition of low molecular weight thermogenic hydrocarbons in the fluids were determined. In general, the abundance of C1−C4 alkanes increased with time. The abundance of CH4 relative to C2−C4 alkanes as reflected by C1/C2+ ratios showed progressive increases from 1.2 to 4.3 with continued sediment heating. Alkenes were enriched in early phase and decreased with time. Carbon isotope ratios (δ13C) of thermogenic CH4 ranged between –42.0~−24.2‰. Carbon isotope ratios of C2H6 and C3H8 were similar to each other throughout the experiment (δ13C = –28.0~−20.3‰). In general, the carbon isotope ratios of C1−C4 alkanes were more close to those of substrate organic matter in larger carbon numbers and at later periods of the experiment. Hydrogen isotope ratios (δD) of CH4 varied from –325~−262‰, more negative than those expected at the isotope equilibrium between CH4 and H2O. Compared with results from the experiment, natural hydrothermal fluids show higher C1/C2+ ratio, more diverse δ13CCH4 values among the fields, higher δ13CC2 values, and higher δDCH4 values. The differences likely result from lower maturity of the experimental fluid and biogenic methane contribution to the natural fluids.
  • Article
    Abiotic redox reactions in hydrothermal mixing zones: decreased energy availability for the subsurface biosphere
    (National Academy of Sciences, 2020-08-12) McDermott, Jill M. ; Sylva, Sean P. ; Ono, Shuhei ; German, Christopher R. ; Seewald, Jeffrey S.
    Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
  • Preprint
    Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9°50′N
    ( 2018-08) Longnecker, Krista ; Sievert, Stefan M. ; Sylva, Sean P. ; Seewald, Jeffrey S. ; Kujawinski, Elizabeth B.
    Deep-sea hydrothermal vents are unique ecosystems that may release chemically distinct dissolved organic matter to the deep ocean. Here, we describe the composition and concentrations of polar dissolved organic compounds observed in low and high temperature hydrothermal vent fluids at 9°50’N on the East Pacific Rise. The concentration of dissolved organic carbon was 46 μM in the low temperature hydrothermal fluids and 14 μM in the high temperature hydrothermal fluids. In the low temperature vent fluids, quantifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. The low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of biological activity in the subseafloor. These compounds may fuel heterotrophic and other metabolic processes at deep-sea hydrothermal vents and beyond.
  • Preprint
    The origin of methanethiol in mid-ocean ridge hydrothermal fluids
    ( 2014-03) Reeves, Eoghan P. ; McDermott, Jill M. ; Seewald, Jeffrey S.
    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (non-biological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of proto-metabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic and sediment-covered mid-ocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (~10-8 M) in high-temperature fluids (>200°C) from all unsedimented systems, and in many cases suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200°C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ~10-6 M) along with NH4+ and low molecular weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sedimented system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems, and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.
  • Article
    Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol : the significance of soluble material
    (Copernicus Publications on behalf of the European Geosciences Union, 2014-06-18) Garimella, S. ; Huang, Y.-W. ; Seewald, Jeffrey S. ; Cziczo, Daniel J.
    This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel–Halsey–Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-KT is likely a result of the dissolution and redistribution of soluble material. (2) Wet generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.
  • Preprint
    Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge
    ( 2015-01) McCollom, Thomas M. ; Seewald, Jeffrey S. ; German, Christopher R.
    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Sample were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12 n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including phenanthrenes and benzothiophene were the only compounds that could be identified as indigenous components of these fluids. Although hydrocarbons and fatty acids were observed in some samples, those compounds were likely derived from particulate matter or biomass entrained during fluid collection. In addition, extracts of some fluid samples from the Rainbow field were found to contain an unresolved complex mixture (UCM) of organic compounds. This UCM shared some characteristics with organic matter extracted from bottom seawater, suggesting that the organic matter observed in these samples might represent seawater-derived compounds that had persisted, albeit with partial alteration, during circulation through the hydrothermal system. While there is considerable evidence that Rainbow and Lost City vent fluids contain methane and other light hydrocarbons produced through abiotic reduction of inorganic carbon, we found no evidence for more complex organic compounds with an abiotic origin in the same fluids.
  • Preprint
    Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450°C, 50 MPa
    ( 2009-07-21) Saccocia, Peter J. ; Seewald, Jeffrey S. ; Shanks, Wayne C.
    Oxygen and hydrogen isotope fractionation factors in the talc-water and serpentine-water systems have been determined by laboratory experiment from 250 to 450°C at 50 MPa using the partial exchange technique. Talc was synthesized from brucite + quartz, resulting in nearly 100% exchange during reaction at 350 and 450°C. For serpentine, D-H exchange was much more rapid than 18O-16O exchange when natural chrysotile fibers were employed in the initial charge. In experiments with lizardite as the starting charge, recrystallization to chrysotile enhanced the rate of 18O-16O exchange with the coexisting aqueous phase.
  • Article
    Genus-specific carbon fixation activity measurements reveal distinct responses to oxygen among hydrothermal vent campylobacteria
    (American Society for Microbiology, 2022-01-25) McNichol, Jesse C. ; Dyksma, Stefan ; Mussmann, Marc ; Seewald, Jeffrey S. ; Sylva, Sean P. ; Sievert, Stefan M.
    Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (previously Epsilonproteobacteria) often dominate the microbial community and that three genera, Arcobacter, Sulfurimonas, and Sulfurovum, frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (∼ 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances.
  • Preprint
    Nonequilibrium clumped isotope signals in microbial methane
    ( 2015-02-09) Wang, David T. ; Gruen, Danielle S. ; Lollar, Barbara Sherwood ; Hinrichs, Kai-Uwe ; Stewart, Lucy C. ; Holden, James F. ; Hristov, Alexander N. ; Pohlman, John W. ; Morrill, Penny L. ; Konneke, Martin ; Delwiche, Kyle B. ; Reeves, Eoghan P. ; Sutcliffe, Chelsea N. ; Ritter, Daniel J. ; Seewald, Jeffrey S. ; McIntosh, Jennifer C. ; Hemond, Harold F. ; Kubo, Michael D. Y. ; Cardace, Dawn ; Hoehler, Tori M. ; Ono, Shuhei
    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.