Luria Catherine M.

No Thumbnail Available
Last Name
Luria
First Name
Catherine M.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula
    (Inter-Research, 2014-10-02) Luria, Catherine M. ; Ducklow, Hugh W. ; Amaral-Zettler, Linda A.
    The classic view of polar ocean foodwebs emphasizes large predators sustained by energy and material flow through short, efficient diatom-krill-predator food chains. Bacterial activity is generally low in cold polar waters compared to that at lower latitudes. This view appears to be changing, with new studies of microbial foodwebs in Arctic and Antarctic oceans. We characterized bacterial, archaeal, and eukaryotic community diversity and composition from 2 depths (near surface and below the euphotic zone) at 4 sites, including the inshore and offshore, and north and south corners of a sampling grid along the western coast of the Antarctic Peninsula (WAP). We detected up to 2-fold higher richness in microbial eukaryotes at surface and deep inshore northern stations as compared to southern stations, but offshore northern and southern stations revealed either no trend or higher richness at depth in the south. In contrast, bacterial and archaeal richness showed no significant differences either inshore or offshore at northern versus southern extents, but did vary with depth. Archaea were virtually absent in summer surface waters, but were present in summer deep and winter surface samples. Overall, winter bacterial and archaeal assemblages most closely resembled summer sub-euphotic zone assemblages, reflecting well-established seasonal patterns of water column turnover and stratification that result in an isolated layer of ‘winter water’ below the euphotic zone. Inter-domain heterotroph-phototroph interactions were evident from network analysis. The WAP is among the most rapidly warming regions on earth. Our results provide a baseline against which future change in microbial communities may be assessed.
  • Article
    Seasonal shifts in bacterial community responses to phytoplankton-derived dissolved organic matter in the Western Antarctic Peninsula
    (Frontiers Media, 2017-11-03) Luria, Catherine M. ; Amaral-Zettler, Linda A. ; Ducklow, Hugh W. ; Repeta, Daniel J. ; Rhyne, Andrew ; Rich, Jeremy
    Bacterial consumption of dissolved organic matter (DOM) drives much of the movement of carbon through the oceanic food web and the global carbon cycle. Understanding complex interactions between bacteria and marine DOM remains an important challenge. We tested the hypothesis that bacterial growth and community succession would respond differently to DOM additions due to seasonal changes in phytoplankton abundance in the environment. Four mesocosm experiments were conducted that spanned the spring transitional period (August–December 2013) in surface waters of the Western Antarctic Peninsula (WAP). Each mesocosm consisted of nearshore surface seawater (50 L) incubated in the laboratory for 10 days. The addition of DOM, in the form of cell-free exudates extracted from Thalassiosira weissflogii diatom cultures led to changes in bacterial abundance, production, and community composition. The timing of each mesocosm experiment (i.e., late winter vs. late spring) influenced the magnitude and direction of bacterial changes. For example, the same DOM treatment applied at different times during the season resulted in different levels of bacterial production and different bacterial community composition. There was a mid-season shift from Collwelliaceae to Polaribacter having the greatest relative abundance after incubation. This shift corresponded to a modest but significant increase in the initial relative abundance of Polaribacter in the nearshore seawater used to set up experiments. This finding supports a new hypothesis that starting community composition, through priority effects, influenced the trajectory of community succession in response to DOM addition. As strong inter-annual variability and long-term climate change may shift the timing of WAP phytoplankton blooms, and the corresponding production of DOM exudates, this study suggests a mechanism by which different seasonal successional patterns in bacterial communities could occur.
  • Article
    Seasonal succession of free-living bacterial communities in coastal waters of the Western Antarctic Peninsula
    (Frontiers Media, 2016-11-03) Luria, Catherine M. ; Amaral-Zettler, Linda A. ; Ducklow, Hugh W. ; Rich, Jeremy J.
    The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.
  • Article
    Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome
    (Genomic Standards Consortium, 2014) Durham, Bryndan P. ; Grote, Jana ; Whittaker, Kerry A. ; Bender, Sara J. ; Luo, Haiwei ; Grim, Sharon L. ; Brown, Julia M. ; Casey, John F. ; Dron, Antony ; Florez-Leiva, Lennis ; Krupke, Andreas ; Luria, Catherine M. ; Mine, Aric ; Nigro, Olivia D. ; Pather, Santhiska ; Talarmin, Agathe ; Wear, Emma K. ; Weber, Thomas S. ; Wilson, Jesse M. ; Church, Matthew J. ; DeLong, Edward F. ; Karl, David M. ; Steward, Grieg F. ; Eppley, John ; Kyrpides, Nikos C. ; Schuster, Stephan ; Rappe, Michael S.
    Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters.