McGillis
Wade R.
McGillis
Wade R.
No Thumbnail Available
Search Results
Now showing
1 - 15 of 15
-
ArticleAir-sea gas transfer : its dependence on wind stress, small-scale roughness, and surface films(American Geophysical Union, 2004-08-21) Frew, Nelson M. ; Bock, Erik J. ; Schimpf, Uwe ; Hara, Tetsu ; Haußecker, Horst ; Edson, James B. ; McGillis, Wade R. ; Nelson, Robert K. ; McKenna, Sean P. ; Uz, B. Mete ; Jahne, B.The influence of wind stress, small-scale waves, and surface films on air-sea gas exchange at low to moderate wind speeds (<10 m s−1) is examined. Coincident observations of wind stress, heat transfer velocity, surface wave slope, and surface film enrichments were made in coastal and offshore waters south of Cape Cod, New England, in July 1997 as part of the NSF-CoOP Coastal Air-Sea Chemical Fluxes study. Gas transfer velocities have been extrapolated from aqueous heat transfer velocities derived from infrared imagery and direct covariance and bulk heat flux estimates. Gas transfer velocity is found to follow a quadratic relationship with wind speed, which accounts for ~75–77% of the variance but which overpredicts transfer velocity in the presence of surface films. The dependence on wind stress as represented by the friction velocity is also nonlinear, reflecting a wave field-dependent transition between limiting transport regimes. In contrast, the dependence on mean square slope computed for the wave number range of 40–800 rad m−1 is found to be linear and in agreement with results from previous laboratory wind wave studies. The slope spectrum of the small-scale waves and the gas transfer velocity are attenuated in the presence of surface films. Observations over large-scale gradients of biological productivity and dissolved organic matter show that the reduction in slope and transfer velocity are more clearly correlated with surface film enrichments than with bulk organic matter concentrations. The mean square slope parameterization explains ~89–95% of the observed variance in the data and does not overpredict transfer velocities where films are present. While the specific relationships between gas transfer velocity and wind speed or mean square slope vary slightly with the choice of Schmidt number exponent used to scale the heat transfer velocities to gas transfer velocities, the correlation of heat or gas transfer velocity with mean square slope is consistently better than with wind speed.
-
ArticleAir-sea CO2 exchange in the equatorial Pacific(American Geophysical Union, 2004-08-28) McGillis, Wade R. ; Edson, James B. ; Zappa, Christopher J. ; Ware, Jonathan D. ; McKenna, Sean P. ; Terray, Eugene A. ; Hare, Jeffrey E. ; Fairall, Christopher W. ; Drennan, William M. ; Donelan, Mark A. ; DeGrandpre, Michael D. ; Wanninkhof, Rik ; Feely, Richard A.GasEx-2001, a 15-day air-sea carbon dioxide (CO2) exchange study conducted in the equatorial Pacific, used a combination of ships, buoys, and drifters equipped with ocean and atmospheric sensors to assess variability and surface mechanisms controlling air-sea CO2 fluxes. Direct covariance and profile method air-sea CO2 fluxes were measured together with the surface ocean and marine boundary layer processes. The study took place in February 2001 near 125°W, 3°S in a region of high CO2. The diurnal variation in the air-sea CO2 difference was 2.5%, driven predominantly by temperature effects on surface solubility. The wind speed was 6.0 ± 1.3 m s−1, and the atmospheric boundary layer was unstable with conditions over the range −1 < z/L < 0. Diurnal heat fluxes generated daytime surface ocean stratification and subsequent large nighttime buoyancy fluxes. The average CO2 flux from the ocean to the atmosphere was determined to be 3.9 mol m−2 yr−1, with nighttime CO2 fluxes increasing by 40% over daytime values because of a strong nighttime increase in (vertical) convective velocities. The 15 days of air-sea flux measurements taken during GasEx-2001 demonstrate some of the systematic environmental trends of the eastern equatorial Pacific Ocean. The fact that other physical processes, in addition to wind, were observed to control the rate of CO2 transfer from the ocean to the atmosphere indicates that these processes need to be taken into account in local and global biogeochemical models. These local processes can vary on regional and global scales. The GasEx-2001 results show a weak wind dependence but a strong variability in processes governed by the diurnal heating cycle. This implies that any changes in the incident radiation, including atmospheric cloud dynamics, phytoplankton biomass, and surface ocean stratification may have significant feedbacks on the amount and variability of air-sea gas exchange. This is in sharp contrast with previous field studies of air-sea gas exchange, which showed that wind was the dominating forcing function. The results suggest that gas transfer parameterizations that rely solely on wind will be insufficient for regions with low to intermediate winds and strong insolation.
-
ArticleRelaxed eddy accumulation measurements of the sea-to-air transfer of dimethylsulfide over the northeastern Pacific(American Geophysical Union, 2004-01-30) Zemmelink, Hendrik J. ; Gieskes, Winfried W. C. ; Klaassen, Wim ; Beukema, Wim J. ; de Groot, Henk W. ; Baar, Hein J. W. de ; Hintsa, Eric J. ; McGillis, Wade R. ; Dacey, John W. H.Gas transfer rates were determined from relaxed eddy accumulation (REA) measurements of the flux of dimethylsulfide (DMS) over the northeastern Pacific Ocean. This first application of the REA technique for the measurement of DMS fluxes over the open ocean produced estimates of the gas transfer rate that are on average higher than those calculated from commonly used parameterizations. The relationship between the total gas transfer rate and wind speed was found to be gas kgas = 0.53 (±0.05) U102. Because of the effect of the airside resistance, the waterside transfer rate was up to 16% higher than kgas. Removal of the airside transfer component from the total transfer rate resulted in a relation between wind speed and waterside transfer of k660 = 0.61 (±0.06) U102. However, DMS fluxes showed a high degree of scatter that could not readily be accounted for by wind speed and atmospheric stability. It has to be concluded that these measurements do not permit an accurate parameterization of gas transfer as a function of wind speed.
-
ArticleBiases in the air-sea flux of CO2 resulting from ocean surface temperature gradients(American Geophysical Union, 2004-06-30) Ward, Brian ; Wanninkhof, Rik ; McGillis, Wade R. ; Jessup, Andrew T. ; DeGrandpre, Michael D. ; Hare, Jeffrey E. ; Edson, James B.The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.
-
ArticleSea-to-air fluxes from measurements of the atmospheric gradient of dimethylsulfide and comparison with simultaneous relaxed eddy accumulation measurements(American Geophysical Union, 2004-01-30) Hintsa, Eric J. ; Dacey, John W. H. ; McGillis, Wade R. ; Edson, James B. ; Zappa, Christopher J. ; Zemmelink, Hendrik J.We measured vertical profiles of dimethylsulfide (DMS) in the atmospheric marine boundary layer from R/P FLIP during the 2000 FAIRS cruise. Applying Monin-Obukhov similarity theory to the DMS gradients and simultaneous micrometeorological data, we calculated sea-to-air DMS fluxes for 34 profiles. From the fluxes and measured seawater DMS concentrations, we calculated the waterside gas transfer velocity, kw. Gas transfer velocities from the gradient flux approach are within the range of previous commonly used parameterizations of kw as a function of wind speed but are a factor of 2 smaller than simultaneous determinations of transfer velocity using the relaxed eddy accumulation technique. This is the first field comparison of these different techniques for measuring DMS flux from the ocean; the accuracy of the techniques and possible reasons for the discrepancy are discussed.
-
ArticleScalar flux profile relationships over the open ocean(American Geophysical Union, 2004-08-14) Edson, James B. ; Zappa, Christopher J. ; Ware, J. A. ; McGillis, Wade R. ; Hare, Jeffrey E.The most commonly used flux-profile relationships are based on Monin-Obukhov (MO) similarity theory. These flux-profile relationships are required in indirect methods such as the bulk aerodynamic, profile, and inertial dissipation methods to estimate the fluxes over the ocean. These relationships are almost exclusively derived from previous field experiments conducted over land. However, the use of overland measurements to infer surface fluxes over the ocean remains questionable, particularly close to the ocean surface where wave-induced forcing can affect the flow. This study investigates the flux profile relationships over the open ocean using measurements made during the 2000 Fluxes, Air-Sea Interaction, and Remote Sensing (FAIRS) and 2001 GasEx experiments. These experiments provide direct measurement of the atmospheric fluxes along with profiles of water vapor and temperature. The specific humidity data are used to determine parameterizations of the dimensionless gradients using functional forms of two commonly used relationships. The best fit to the Businger-Dyer relationship [ Businger, 1988 ] is found using an empirical constant of a q = 13.4 ± 1.7. The best fit to a formulation that has the correct form in the limit of local free convection [e.g., Wyngaard, 1973 ] is found using a q = 29.8 ± 4.6. These values are in good agreement with the consensus values from previous overland experiments and the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithm [ Fairall et al., 2003 ]; e.g., the COARE algorithm uses empirical constants of 15 and 34.2 for the Businger-Dyer and convective forms, respectively. Although the flux measurements were made at a single elevation and local similarity scaling is applied, the good agreement implies that MO similarity is valid within the marine atmospheric surface layer above the wave boundary layer.
-
ArticleProductivity of a coral reef using boundary layer and enclosure methods(American Geophysical Union, 2011-02-15) McGillis, Wade R. ; Langdon, Chris ; Loose, Brice ; Yates, Kimberly K. ; Corredor, JorgeThe metabolism of Cayo Enrique Reef, Puerto Rico, was studied using in situ methods during March 2009. Benthic O2 fluxes were used to calculate net community production using both the boundary layer gradient and enclosure techniques. The boundary layer O2 gradient and the drag coefficients were used to calculate productivity ranging from −12.3 to 13.7 mmol O2 m−2 h−1. Productivity measurements from the enclosure method ranged from −11.0 to 12.9 mmol O2 m−2 h−1. During the study, the mean hourly difference between the methods was 0.65 mmol O2 m−2 h−1 (r2 = 0.92), resulting in well-reconciled estimates of net community production between the boundary layer (−33.1 mmol m−2 d−1) and enclosure (−46.3 mmol m−2 d−1) techniques. The results of these independent approaches corroborate quantified rates of metabolism at Cayo Enrique Reef. Close agreement between methods demonstrates that boundary layer measurements can provide near real-time assessments of coral reef health.
-
ArticleRain-induced turbulence and air-sea gas transfer(American Geophysical Union, 2009-07-09) Zappa, Christopher J. ; Ho, David T. ; McGillis, Wade R. ; Banner, Michael L. ; Dacey, John W. H. ; Bliven, Larry F. ; Ma, Barry ; Nystuen, Jeffrey A.Results from a rain and gas exchange experiment (Bio2 RainX III) at the Biosphere 2 Center demonstrate that turbulence controls the enhancement of the air-sea gas transfer rate (or velocity) k during rainfall, even though profiles of the turbulent dissipation rate ɛ are strongly influenced by near-surface stratification. The gas transfer rate scales with ɛ inline equation for a range of rain rates with broad drop size distributions. The hydrodynamic measurements elucidate the mechanisms responsible for the rain-enhanced k results using SF6 tracer evasion and active controlled flux technique. High-resolution k and turbulence results highlight the causal relationship between rainfall, turbulence, stratification, and air-sea gas exchange. Profiles of ɛ beneath the air-sea interface during rainfall, measured for the first time during a gas exchange experiment, yielded discrete values as high as 10−2 W kg−1. Stratification modifies and traps the turbulence near the surface, affecting the enhancement of the transfer velocity and also diminishing the vertical mixing of mass transported to the air-water interface. Although the kinetic energy flux is an integral measure of the turbulent input to the system during rain events, ɛ is the most robust response to all the modifications and transformations to the turbulent state that follows. The Craig-Banner turbulence model, modified for rain instead of breaking wave turbulence, successfully predicts the near-surface dissipation profile at the onset of the rain event before stratification plays a dominant role. This result is important for predictive modeling of k as it allows inferring the surface value of ɛ fundamental to gas transfer.
-
ArticleInfluence of rain on air-sea gas exchange : lessons from a model ocean(American Geophysical Union, 2004-07-01) Ho, David T. ; Zappa, Christopher J. ; McGillis, Wade R. ; Bliven, Larry F. ; Ward, Brian ; Dacey, John W. H. ; Schlosser, Peter ; Hendricks, Melissa B.Rain has been shown to significantly enhance the rate of air-water gas exchange in fresh water environments, and the mechanism behind this enhancement has been studied in laboratory experiments. In the ocean, the effects of rain are complicated by the potential influence of density stratification at the water surface. Since it is difficult to perform controlled rain-induced gas exchange experiments in the open ocean, an SF6 evasion experiment was conducted in the artificial ocean at Biosphere 2. The measurements show a rapid depletion of SF6 in the surface layer due to rain enhancement of air-sea gas exchange, and the gas transfer velocity was similar to that predicted from the relationship established from freshwater laboratory experiments. However, because vertical mixing is reduced by stratification, the overall gas flux is lower than that found during freshwater experiments. Physical measurements of various properties of the ocean during the rain events further elucidate the mechanisms behind the observed response. The findings suggest that short, intense rain events accelerate gas exchange in oceanic environments.
-
ArticleEvaluation of the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment (NOAA/COARE) air-sea gas transfer parameterization using GasEx data(American Geophysical Union, 2004-07-16) Hare, Jeffrey E. ; Fairall, Christopher W. ; McGillis, Wade R. ; Edson, James B. ; Ward, Brian ; Wanninkhof, RikDuring the two recent GasEx field experiments, direct covariance measurements of air-sea carbon dioxide fluxes were obtained over the open ocean. Concurrently, the National Oceanic and Atmospheric Administration/Coupled-Ocean Atmospheric Response Experiment air-sea gas transfer parameterization was developed to predict gas transfer velocities from measurements of the bulk state of the sea surface and atmosphere. The model output is combined with measurements of the mean air and sea surface carbon dioxide fugacities to provide estimates of the air-sea CO2 flux, and the model is then tuned to the GasEx-1998 data set. Because of differences in the local environment and possibly because of weaknesses in the model, some discrepancies are observed between the predicted fluxes from the GasEx-1998 and GasEx-2001 cases. To provide an estimate of the contribution to the air-sea flux of gas due to wave-breaking processes, the whitecap and bubble parameterizations are removed from the model output. These results show that moderate (approximately 15 m s−1) wind speed breaking wave gas transfer processes account for a fourfold increase in the flux over the modeled interfacial processes.
-
PreprintEffects of turbulence on the feeding rate of a pelagic predator : the planktonic hydroid Clytia gracilis( 2005-12-14) Adamik, Peter ; Gallager, Scott M. ; Horgan, Erich F. ; Madin, Laurence P. ; McGillis, Wade R. ; Govindarajan, Annette F. ; Alatalo, PhilipRelatively little is known about the role of turbulence in a predator - prey system where the predator is a passive, pelagic forager. The Campanulariid hydroid Clytia gracilis (Cnidaria, Hydrozoa) is unusual because it occurs as planktonic colonies and is reported to forage passively in the water column on Georges Bank, Massachusetts, USA. In this study we investigated the role of various turbulence conditions on the feeding rate of C. gracilis colonies in laboratory experiments. We found a positive relationship between turbulence velocities and feeding rates up to a turbulent energy dissipation rate of ca 1 cm2 s-3. Beyond this threshold feeding rate decreased slightly, indicating a dome-shaped relationship. Additionally, a negative relationship was found between feeding efficiency and hydroid colony size under lower turbulent velocities, but this trend was not significant under higher turbulence regimes.
-
ArticleInvestigations of air-sea gas exchange in the CoOP Coastal Air-Sea Chemical Exchange project(Oceanography Society, 2008-12) Edson, James B. ; DeGrandpre, Michael D. ; Frew, Nelson M. ; McGillis, Wade R.The exchange of CO2 and other gases across the ocean-air interface is an extremely important component in global climate dynamics, photosynthesis and respiration, and the absorption of anthropogenically produced CO2. The many different mechanisms and properties that control the air-sea flux of CO2 can have large spatial and temporal variability, particularly in the coastal environment. The need for making short-time-scale and small-spatial-scale estimates of gas transfer velocity, along with the physical and chemical parameters that affect it, provided a framework for the field experiments of the Coastal Ocean Processes Program (CoOP) Coastal Air-Sea Chemical Exchange (CASCEX) program. As such, the CASCEX project provided an opportunity to develop some of the first in situ techniques to estimate gas fluxes using micrometeorological and thermal imagery techniques. The results reported from the CASCEX experiments represent the first step toward reconciling the indirect but widely accepted estimates of gas exchange with these more direct, higher-resolution estimates over the coastal ocean. These results and the advances in sensor technology initiated during the CASCEX project have opened up even larger regions of the global ocean to investigation of gas exchange and its role in climate change.
-
ArticleFluxes and gas transfer rates of the biogenic trace gas DMS derived from atmospheric gradients(American Geophysical Union, 2004-06-30) Zemmelink, Hendrik J. ; Dacey, John W. H. ; Hintsa, Eric J. ; McGillis, Wade R. ; Gieskes, Winfried W. C. ; Klaassen, Wim ; de Groot, Henk W. ; Baar, Hein J. W. deGas transfer rates were determined from vertical profile measurements of atmospheric dimethylsulfide (DMS) gradients over the equatorial Pacific Ocean obtained during the GasEx-2001 cruise. A quadratic relationship between gas transfer velocity and wind speed was derived from the DMS flux measurements; this relationship was in close agreement with a parameterization derived from relaxed eddy accumulation measurements of DMS over the northeastern Pacific Ocean. However, the GasEx-2001 relationship results in gas transfer rates that are a factor 2 higher than gas transfer rates calculated from a parameterization that is based on coincident eddy correlation measurements of CO2 flux. The measurement precision of both the profiling and eddy correlation techniques applied during GasEx-2001 is comparable; the two gas transfer data sets are in agreement within their uncertainty. Differences in the number of samples and the wind speed range over which CO2 and DMS fluxes were measured are likely causes for the observed discrepancy.
-
ArticleEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems(American Geophysical Union, 2007-05-17) Zappa, Christopher J. ; McGillis, Wade R. ; Raymond, Peter A. ; Edson, James B. ; Hintsa, Eric J. ; Zemmelink, Hendrik J. ; Dacey, John W. H. ; Ho, David T.Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the inline equation power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.
-
ArticleCarbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America(John Wiley & Sons, 2018-04-04) Najjar, Raymond G. ; Herrmann, Maria ; Alexander, Richard ; Boyer, Elizabeth W. ; Burdige, David J. ; Butman, David ; Cai, Wei-Jun ; Canuel, Elizabeth A. ; Chen, Robert F. ; Friedrichs, Marjorie A. M. ; Feagin, Russell A. ; Griffith, Peter C. ; Hinson, Audra L. ; Holmquist, James R. ; Hu, Xinping ; Kemp, William M. ; Kroeger, Kevin D. ; Mannino, Antonio ; McCallister, S. Leigh ; McGillis, Wade R. ; Mulholland, Margaret R. ; Pilskaln, Cynthia H. ; Salisbury, Joseph E. ; Signorini, Sergio R. ; St-Laurent, Pierre ; Tian, Hanqin ; Tzortziou, Maria ; Vlahos, Penny ; Wang, Zhaohui Aleck ; Zimmerman, Richard C.Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.