Centurioni Luca R.

No Thumbnail Available
Last Name
Centurioni
First Name
Luca R.
ORCID
0000-0002-6248-8780

Search Results

Now showing 1 - 20 of 32
  • Article
    Can we detect submesoscale motions in drifter pair dispersion?
    (American Meteorological Society, 2019-08-20) Essink, Sebastian ; Hormann, Verena ; Centurioni, Luca R. ; Mahadevan, Amala
    A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.
  • Article
    Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts
    (Oceanography Society, 2017-06) Goni, Gustavo J. ; Todd, Robert E. ; Jayne, Steven R. ; Halliwell, George R. ; Glenn, Scott ; Dong, Jili ; Curry, Ruth G. ; Domingues, Ricardo ; Bringas, Francis ; Centurioni, Luca R. ; DiMarco, Steven F. ; Miles, Travis ; Morell, Julio M. ; Pomales, Luis ; Kim, Hyun-Sook ; Robbins, Pelle E. ; Gawarkiewicz, Glen G. ; Wilkin, John L. ; Heiderich, Joleen ; Baltes, Rebecca ; Cione, Joseph J. ; Seroka, Greg ; Knee, Kelly ; Sanabia, Elizabeth
    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.
  • Article
    Variability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the northern Bay of Bengal during the Waning 2015 Southwest Monsoon
    (The Oceanography Society, 2016-06) Hormann, Verena ; Centurioni, Luca R. ; Mahadevan, Amala ; Essink, Sebastian ; D'Asaro, Eric A. ; Kumar, B. Praveen
    A dedicated drifter experiment was conducted in the northern Bay of Bengal during the 2015 waning southwest monsoon. To sample a variety of spatiotemporal scales, a total of 36 salinity drifters and 10 standard drifters were deployed in a tight array across a freshwater front. The salinity drifters carried for the first time a revised sensor algorithm, and its performance during the 2015 field experiment is very encouraging for future efforts. Most of the drifters were quickly entrained in a mesoscale feature centered at about 16.5°N, 89°E and stayed close together during the first month of observations. While the eddy was associated with rather homogeneous temperature and salinity characteristics, much larger variability was found outside of it toward the coastline, and some of the observed salinity patches had amplitudes in excess of 1.5 psu. To particularly quantify the smaller spatiotemporal scales, an autocorrelation analysis of the drifter salinities for the first two deployment days was performed, indicating not only spatial scales of less than 5 km but also temporal variations of the order of a few hours. The hydrographic measurements were complemented by first estimates of kinematic properties from the drifter clusters, however, more work is needed to link the different observed characteristics.
  • Article
    Ocean observations in support of studies and forecasts of tropical and extratropical cyclones
    (Frontiers Media, 2019-07-29) Domingues, Ricardo ; Kuwano-Yoshida, Akira ; Chardon-Maldonado, Patricia ; Todd, Robert E. ; Halliwell, George R. ; Kim, Hyun-Sook ; Lin, I.-I. ; Sato, Katsufumi ; Narazaki, Tomoko ; Shay, Lynn Keith ; Miles, Travis ; Glenn, Scott ; Zhang, Jun A. ; Jayne, Steven R. ; Centurioni, Luca R. ; Le Hénaff, Matthieu ; Foltz, Gregory R. ; Bringas, Francis ; Ali, M. M. ; DiMarco, Steven F. ; Hosoda, Shigeki ; Fukuoka, Takuya ; LaCour, Benjamin ; Mehra, Avichal ; Sanabia, Elizabeth ; Gyakum, John R. ; Dong, Jili ; Knaff, John A. ; Goni, Gustavo J.
    Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.
  • Article
    Diagnosing frontal dynamics from observations using a variational approach
    (American Geophysical Union, 2022-09-30) Cutolo, Eugenio ; Pascual, Ananda ; Ruiz, Simón ; Johnston, T. M. Shaun ; Freilich, Mara ; Mahadevan, Amala ; Shcherbina, Andrey ; Poulain, Pierre‐Marie ; Ozgokmen, Tamay ; Centurioni, Luca R. ; Rudnick, Daniel L. ; D’Asaro, Eric
    Intensive hydrographic and horizontal velocity measurements collected in the Alboran Sea enabled us to diagnose the three‐dimensional dynamics of a frontal system. The sampled domain was characterized by a 40 km diameter anticyclonic eddy, with an intense front on its eastern side, separating the Atlantic and Mediterranean waters. Here, we implemented a multi‐variate variational analysis (VA) to reconstruct the hydrographic fields, combining the 1‐km horizontal resolution of the Underway Conductivity‐Temperature‐Depth (CTD) system with information on the flow shape from the Acoustic Doppler Current Profiler velocities. One advantage of the VA is given by the physical constraint, which preserves fine‐scale gradients better than the classical optimal interpolation (OI). A comparison between real drifter trajectories and virtual particles advected in the mapping quantified the improvements in the VA over the OI, with a 15% larger skill score. Quasi‐geostrophic (QG) and semi‐geostrophic (SG) omega equations enabled us to estimate the vertical velocity (w) which reached 40 m/day on the dense side of the front. How nutrients and other passive tracers leave the mixed‐layer and subduct is estimated with 3D advection from the VA, which agreed with biological sampling from traditional CTD casts at two eddy locations. Downwelling warm filaments are further evidence of subduction, in line with the w from SG, but not with QG. SG better accounted for the along‐isopycnal component of w in agreement with another analysis made on isopycnal coordinates. The multi‐platform approach of this work and the use of variational methods improved the characterization and understanding of (sub)‐mesoscale frontal dynamics.
  • Article
    Novel and flexible approach to access the open ocean: Uses of sailing research vessel Lady Amber during SPURS-2.
    (Oceanography Society, 2019-06-14) Rainville, Luc ; Centurioni, Luca R. ; Asher, William E. ; Clayson, Carol A. ; Drushka, Kyla ; Edson, James B. ; Hodges, Benjamin A. ; Hormann, Verena ; Farrar, J. Thomas ; Schanze, Julian J. ; Shcherbina, Andrey Y.
    SPURS-2 (Salinity Processes in the Upper-ocean Regional Study 2) used the schooner Lady Amber, a small sailing research vessel, to deploy, service, maintain, and recover a variety of oceanographic and meteorological instruments in the eastern Pacific Ocean. Low operational costs allowed us to frequently deploy floats and drifters to collect data necessary for resolving the regional circulation of the eastern tropical Pacific. The small charter gave us the opportunity to deploy drifters in locations chosen according to current conditions, to recover and deploy various autonomous instruments in a targeted and adaptive manner, and to collect additional near-surface and atmospheric measurements in the remote SPURS-2 region.
  • Article
    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum
    (The Oceanography Society, 2015-03) Schmitt, Raymond W. ; Asher, William E. ; Bingham, Frederick ; Carton, James A. ; Centurioni, Luca R. ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hodges, Benjamin A. ; Jessup, Andrew T. ; Kessler, William S. ; Rainville, Luc ; Shcherbina, Andrey Y.
    One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address.
  • Article
    Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability
    (Frontiers Media, 2019-08-08) Subramanian, Aneesh C. ; Balmaseda, Magdalena A. ; Centurioni, Luca R. ; Chattopadhyay, Rajib ; Cornuelle, Bruce D. ; DeMott, Charlotte ; Flatau, Maria ; Fujii, Yosuke ; Giglio, Donata ; Gille, Sarah T. ; Hamill, Thomas M. ; Hendon, Harry ; Hoteit, Ibrahim ; Kumar, Arun ; Lee, Jae-Hak ; Lucas, Andrew J. ; Mahadevan, Amala ; Matsueda, Mio ; Nam, SungHyun ; Paturi, Shastri ; Penny, Stephen G. ; Rydbeck, Adam ; Sun, Rui ; Takaya, Yuhei ; Tandon, Amit ; Todd, Robert E. ; Vitart, Frederic ; Yuan, Dongliang ; Zhang, Chidong
    Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts. These observational platforms should also be tested and evaluated in ocean observation sensitivity experiments with current and future generation CDA and S2S prediction systems. Investments in the new ocean observations as well as model and DA system developments can lead to substantial returns on cost savings from disaster mitigation as well as socio–economic decisions that use S2S forecast information.
  • Article
    Mean structure and variability of the cold dome northeast of Taiwan
    (The Oceanography Society, 2011-12) Jan, Sen ; Chen, Chung-Chi ; Tsai, Ya-Ling ; Yang, Yiing-Jang ; Wang, Joe ; Chern, Ching-Sheng ; Gawarkiewicz, Glen G. ; Lien, Ren-Chieh ; Centurioni, Luca R. ; Kuo, Jia-Yu
    The "cold dome" off northeastern Taiwan is one of the distinctive oceanic features in the seas surrounding Taiwan. The cold dome is important because persistent upwelling makes the region highly biologically productive. This article uses historical data, recent observations, and satellite-observed sea surface temperatures (SST) to describe the mean structure and variability of the cold dome. The long-term mean position of the cold dome, using the temperature at 50 m depth as a reference, is centered at 25.625°N, 122.125°E. The cold dome has a diameter of approximately 100 km, and is maintained by cold (< 21°C) and salty (> 34.5) waters upwelled along the continental slope. The ocean currents around the cold dome, although weak, flow counterclockwise. The monsoon-driven winter intrusion of the Kuroshio current onto the East China Sea shelf intensifies the upwelling and carries more subsurface water up to the cold dome than during the summer monsoon season. On a shorter timescale, the cold dome's properties can be significantly modified by the passage of typhoons, which creates favorable physical conditions for short-term Kuroshio intrusions in summer. The surface expression of the cold dome viewed from satellite SST images is often not domelike but instead is an irregular shape with numerous filaments, and thus may contribute substantially to shelf/slope exchange. As a result of persistent upwelling, typhoon passage, and monsoon forcing, higher chlorophyll a concentrations, and thus higher primary productivity, are frequently observed in the vicinity of the cold dome.
  • Article
    Circulation and intrusions northeast of Taiwan : chasing and predicting uncertainty in the cold dome
    (The Oceanography Society, 2011-12) Gawarkiewicz, Glen G. ; Jan, Sen ; Lermusiaux, Pierre F. J. ; McClean, Julie L. ; Centurioni, Luca R. ; Taylor, Kevin ; Cornuelle, Bruce D. ; Duda, Timothy F. ; Wang, Joe ; Yang, Yiing-Jang ; Sanford, Thomas B. ; Lien, Ren-Chieh ; Lee, Craig M. ; Lee, Ming-An ; Leslie, Wayne ; Haley, Patrick J. ; Niiler, Pearn P. ; Gopalakrishnan, Ganesh ; Velez-Belchi, Pedro ; Lee, Dong-Kyu ; Kim, Yoo Yin
    An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7–8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.
  • Article
    Flow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific
    (Oceanography Society, 2019-12-11) Johnston, T. M. Shaun ; Schönau, Martha ; Paluszkiewicz, Theresa ; MacKinnon, Jennifer A. ; Arbic, Brian K. ; Colin, Patrick L. ; Alford, Matthew H. ; Andres, Magdalena ; Centurioni, Luca R. ; Graber, Hans C. ; Helfrich, Karl R. ; Hormann, Verena ; Lermusiaux, Pierre F. J. ; Musgrave, Ruth C. ; Powell, Brian S. ; Qiu, Bo ; Rudnick, Daniel L. ; Simmons, Harper L. ; St. Laurent, Louis C. ; Terrill, Eric ; Trossman, David S. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; Zeide, Kristin L.
    Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.
  • Article
    Observations of a freshwater pulse induced by Typhoon Morakot off the northern coast of Taiwan in August 2009
    (Sears Foundation for Marine Research, 2013-01-01) Jan, Sen ; Wang, Joe ; Yang, Yiing-Jang ; Hung, Chin-Chang ; Chern, Ching-Sheng ; Gawarkiewicz, Glen G. ; Lien, Ren-Chieh ; Centurioni, Luca R. ; Kuo, Jia-Yu ; Wang, Bee
    In this paper we describe large-scale impacts from a typhoon on the circulation over the continental shelf and slope north of Taiwan. Typhoon Morakot was a category 2 tropical storm that landed in central Taiwan, but caused destruction primarily in southern Taiwan from Aug. 8–10, 2009. The typhoon brought record-breaking rainfall; approximately 3 m accumulated over four days in southern Taiwan. River discharge on the west coast of Taiwan increased rapidly from Aug. 6–7 and peaked on Aug. 8, yielding a total volume 27.2 km3 of freshwater discharged off the west coast of Taiwan over five days (Aug. 6–10). The freshwater mixed with ambient seawater, and was carried primarily by the northeastward-flowing Taiwan Strait current to the sea off the northern coast of Taiwan. Two joint surveys each measured the hydrography and current velocity in the Taiwan Strait and off the northeastern coast of Taiwan roughly one week and two and a half weeks after Morakot. The first survey observed an Ω-shaped freshwater pulse off the northern tip of Taiwan, in which the salinity was ∼1 lower than the climatological mean salinity. The freshwater pulse met the Kuroshio and formed a density front off the northeastern coast of Taiwan. The hydrographic data obtained in the second survey suggested that the major freshwater pulse left the sea off the northern and northeastern coasts of Taiwan, which may have been carried by the Kuroshio to the northeast. Biogeochemical sampling conducted after Morakot suggested that the concentrations of nutrients in the upper ocean off the northern coast of Taiwan increased remarkably compared with their normal values. A typhoon-induced biological bloom is attributed to the inputs both from the nutrient-rich river runoff and upwelling of the subsurface Kuroshio water.
  • Article
    Progress in understanding of Indian Ocean circulation, variability, air-sea exchange, and impacts on biogeochemistry
    (European Geosciences Union, 2021-11-26) Phillips, Helen E. ; Tandon, Amit ; Furue, Ryo ; Hood, Raleigh R. ; Ummenhofer, Caroline C. ; Benthuysen, Jessica A. ; Menezes, Viviane V. ; Hu, Shijian ; Webber, Ben ; Sanchez-Franks, Alejandra ; Cherian, Deepak A. ; Shroyer, Emily L. ; Feng, Ming ; Wijesekera, Hemantha W. ; Chatterjee, Abhisek ; Yu, Lisan ; Hermes, Juliet ; Murtugudde, Raghu ; Tozuka, Tomoki ; Su, Danielle ; Singh, Arvind ; Centurioni, Luca R. ; Prakash, Satya ; Wiggert, Jerry D.
    Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and air–sea exchanges, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered that control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air–sea interactions, and climate variability. Coordinated international focus on the Indian Ocean has motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small-scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and interactions between the surface and the deep ocean. A newly discovered regional climate mode in the southeast Indian Ocean, the Ningaloo Niño, has instigated more regional air–sea coupling and marine heatwave research in the global oceans. In the last decade, we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean and have highlighted the critical role of the Indian Ocean as a clearing house for anthropogenic heat. This synthesis paper reviews the advances in these areas in the last decade.
  • Article
    The Kuroshio and Luzon Undercurrent east of Luzon Island
    (The Oceanography Society, 2015-12) Lien, Ren-Chieh ; Ma, Barry ; Lee, Craig M. ; Sanford, Thomas B. ; Mensah, Vigan ; Centurioni, Luca R. ; Cornuelle, Bruce D. ; Gopalakrishnan, Ganesh ; Gordon, Arnold L. ; Chang, Ming-Huei ; Jayne, Steven R. ; Yang, Yiing-Jang
    Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
  • Article
    Super sites for advancing understanding of the oceanic and atmospheric boundary layers
    (Marine Technology Society, 2021-05-01) Clayson, Carol A. ; Centurioni, Luca R. ; Cronin, Meghan F. ; Edson, James B. ; Gille, Sarah T. ; Muller-Karger, Frank E. ; Parfitt, Rhys ; Riihimaki, Laura D. ; Smith, Shawn R. ; Swart, Sebastiaan ; Vandemark, Douglas ; Villas Bôas, Ana B. ; Zappa, Christopher J. ; Zhang, Dongxiao
    Air‐sea interactions are critical to large-scale weather and climate predictions because of the ocean's ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean‐atmosphere Super Sites place them in an “Ocean Shot” class.
  • Article
    ASIRI : an ocean–atmosphere initiative for Bay of Bengal
    (American Meteorological Society, 2016-11-22) Wijesekera, Hemantha W. ; Shroyer, Emily L. ; Tandon, Amit ; Ravichandran, M. ; Sengupta, Debasis ; Jinadasa, S. U. P. ; Fernando, Harindra J. S. ; Agrawal, Neeraj ; Arulananthan, India K. ; Bhat, G. S. ; Baumgartner, Mark F. ; Buckley, Jared ; Centurioni, Luca R. ; Conry, Patrick ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hormann, Verena ; Jarosz, Ewa ; Jensen, Tommy G. ; Johnston, T. M. Shaun ; Lankhorst, Matthias ; Lee, Craig M. ; Leo, Laura S. ; Lozovatsky, Iossif ; Lucas, Andrew J. ; MacKinnon, Jennifer A. ; Mahadevan, Amala ; Nash, Jonathan D. ; Omand, Melissa M. ; Pham, Hieu ; Pinkel, Robert ; Rainville, Luc ; Ramachandran, Sanjiv ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Send, Uwe ; Sharma, Rashmi ; Simmons, Harper L. ; Stafford, Kathleen M. ; St. Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Venkatesan, Ramasamy ; Teague, William J. ; Wang, David W. ; Waterhouse, Amy F. ; Weller, Robert A. ; Whalen, Caitlin B.
    Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
  • Article
    Eddies, topography, and the abyssal flow by the Kyushu-Palau Ridge near Velasco Reef
    (The Oceanography Society, 2019-12-11) Andres, Magdalena ; Siegelman, Mika ; Hormann, Verena ; Musgrave, Ruth C. ; Merrifield, Sophia T. ; Rudnick, Daniel L. ; Merrifield, Mark ; Alford, Matthew H. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; MacKinnon, Jennifer A. ; Centurioni, Luca R. ; Nash, Jonathan D. ; Terrill, Eric
    Palau, an island group in the tropical western North Pacific at the southern end of Kyushu-Palau Ridge, sits near the boundary between the westward-​flowing North Equatorial Current (NEC) and the eastward-flowing North Equatorial Countercurrent. Combining remote-sensing observations of the sea surface with an unprecedented in situ set of subsurface measurements, we examine the flow near Palau with a particular focus on the abyssal circulation and on the deep expression of mesoscale eddies in the region. We find that the deep currents time-averaged over 10 months are generally very weak north of Palau and not aligned with the NEC in the upper ocean. This weak abyssal flow is punctuated by the passing of mesoscale eddies, evident as sea surface height anomalies, that disrupt the mean flow from the surface to the seafloor. Eddy influence is observed to depths exceeding 4,200 m. These deep-​reaching mesoscale eddies typically propagate westward past Palau, and as they do, any associated deep flows must contend with the topography of the Kyushu-Palau Ridge. This interaction leads to vertical structure far below the main thermocline. Observations examined here for one particularly strong and well-sampled eddy suggest that the flow was equivalent barotropic in the far field east and west of the ridge, with a more complicated vertical structure in the immediate vicinity of the ridge by the tip of Velasco Reef.
  • Article
    Mean structure and fluctuations of the Kuroshio east of Taiwan from in situ and remote observations
    (The Oceanography Society, 2015-12) Yang, Yiing-Jang ; Jan, Sen ; Chang, Ming-Huei ; Wang, Joe ; Mensah, Vigan ; Kuo, Tien-Hsia ; Tsai, Cheng-Ju ; Lee, Chung-Yaung ; Andres, Magdalena ; Centurioni, Luca R. ; Tseng, Yu-Heng ; Liang, Wen-Der ; Lai, Jian-Wu
    The Kuroshio is important to climate, weather prediction, and fishery management along the northeast coast of Asia because it transports tremendous heat, salt, and energy from east of the Philippines to waters southeast of Japan. In the middle of its journey northward, the Kuroshio’s velocity mean and its variability east of Taiwan crucially affect its downstream variability. To improve understanding of the Kuroshio there, multiple platforms were used to collect intensive observations off Taiwan during the three-year Observations of the Kuroshio Transports and their Variability (OKTV) program (2012–2015). Mean Kuroshio velocity transects show two velocity maxima southeast of Taiwan, with the primary velocity core on the onshore side of the Kuroshio exhibiting a mean maximum velocity of ~1.2 m s–1. The two cores then merge and move at a single velocity maximum of ~1 m s–1 east of Taiwan. Standard deviations of both the directly measured poleward (v) and zonal (u) velocities are ~0.4 m s–1 in the Kuroshio main stream. Water mass exchange in the Kuroshio east of Taiwan was found to be complicated, as it includes water of Kuroshio origin, South China Sea Water, and West Philippine Sea Water, and it vitally affects heat, salt, and nutrient inputs to the East China Sea. Impinging eddies and typhoons are two of the principal causes of variability in the Kuroshio. This study’s models are more consistent with the observed Kuroshio than with high-frequency radar measurements.
  • Article
    Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan
    (The Oceanography Society, 2015-12) Andres, Magdalena ; Jan, Sen ; Sanford, Thomas B. ; Mensah, Vigan ; Centurioni, Luca R. ; Book, Jeffrey W.
    In the subtropical western North Pacific Ocean, the Kuroshio delivers heat, salt, and momentum poleward, much like its North Atlantic analog, the Gulf Stream. Though the Kuroshio generally flows along the western boundary from Taiwan to southeastern Japan as an “attached” current, the Kuroshio’s strength, vertical structure, and horizontal position undergo significant temporal and spatial variability along this entire route. Ubiquitous mesoscale eddies and complicated topography associated with a string of marginal seas combine to make the western North Pacific a region with complex circulation. Here, we synthesize results from the recent US Origins of the Kuroshio and Mindanao Currents and Taiwan Observations of Kuroshio Transport Variability observational programs with previous findings to build a comprehensive picture of the Kuroshio on its route from northeastern Taiwan to southeastern Japan, where the current finally transitions from a western boundary current into the Kuroshio Extension, a vigorously meandering free jet.
  • Article
    Global in situ observations of essential climate and ocean variables at the air-sea interface
    (Frontiers Media, 2019-07-25) Centurioni, Luca R. ; Turton, Jon ; Lumpkin, Rick ; Braasch, Lancelot ; Brassington, Gary ; Chao, Yi ; Charpentier, Etienne ; Chen, Zhaohui ; Corlett, Gary ; Dohan, Kathleen ; Donlon, Craig ; Gallage, Champika ; Hormann, Verena ; Ignatov, Alexander ; Ingleby, Bruce ; Jensen, Robert ; Kelly-Gerreyn, Boris A. ; Koszalka, Inga M. ; Lin, Xiaopei ; Lindstrom, Eric ; Maximenko, Nikolai ; Merchant, Christopher J. ; Minnett, Peter J. ; O’Carroll, Anne ; Paluszkiewicz, Theresa ; Poli, Paul ; Poulain, Pierre Marie ; Reverdin, Gilles ; Sun, Xiujun ; Swail, Val ; Thurston, Sidney ; Wu, Lixin ; Yu, Lisan ; Wang, Bin ; Zhang, Dongxiao
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.