Myers Eugene

No Thumbnail Available
Last Name
Myers
First Name
Eugene
ORCID
0000-0002-6580-7839

Search Results

Now showing 1 - 2 of 2
  • Article
    The Earth BioGenome Project 2020: starting the clock
    (National Academy of Sciences, 2022-01-18) Lewin, Harris A. ; Richards, Stephen ; Miguel L. Allende ; Lieberman Aiden, Erez ; Archibald, John M. ; Bálint, Miklós ; Barker, Katharine B. ; Baumgartner, Bridget ; Belov, Katherine ; Bertorelle, Giorgio ; Blaxter, Mark ; Cai, Jing ; Caperello, Nicolette D. ; Carlson, Keith ; Castilla-Rubio, Juan Carlos ; Chaw, Shu-Miaw ; Chen, Lei ; Childers, Anna K. ; Coddington, Jonathan ; Conde, Dalia A. ; Corominas, Montserrat ; Crandall, Keith A. ; Crawford, Andrew J. ; DiPalma, Federica ; Durbin, Richard ; Ebenezer, ThankGod E. ; Edwards, Scott V. ; Fedrigo, Olivier ; Flicek, Paul ; Formenti, Giulio ; Gibbs, Richard A. ; Gilbert, M. Thomas P. ; Goldstein, Melissa M. ; Graves, Jennifer Marshall ; Greely, Henry T. ; Grigoriev, Igor V. ; Hackett, Kevin J. ; Hall, Neil ; Haussler, David ; Helgen, Kristofer M. ; Hogg, Carolyn J. ; Isobe, Sachiko ; Jakobsen, Kjetill S. ; Janke, Axel ; Jarvis, Erich ; Johnson, Warren E. ; Jones, Steven J. M. ; Karlsson, Elinor K. ; Kersey, Paul J. ; Kim, Jin-Hyoung ; Kress, W. John ; Kuraku, Shigehiro ; Lawniczak, Mara K. N. ; Leebens-Mack, James H. ; Li, Xueyan ; Lindblad-Toh, Kerstin ; Liu, Xin ; Lopez, Jose V. ; Marques-Bonet, Tomas ; Mazard, Sophie ; Mazet, Jonna A. K. ; Mazzoni, Camila J. ; Myers, Eugene ; O’Neill, Rachel J. ; Paez, Sadye ; Park, Hyun ; Robinson, Gene E. ; Roquet, Cristina ; Ryder, Oliver A. ; Sabir, Jamal S. M. ; Shaffer, H. Bradley ; Shank, Timothy M. ; Sherkow, Jacob S. ; Soltis, Pamela S. ; Tang, Boping ; Tedersoo, Leho ; Uliano-Silva, Marcela ; Wang, Kun ; Wei, Xiaofeng ; Wetzer, Regina ; Wilson, Julia L. ; Xu, Xun ; Yang, Huanming ; Yoder, Anne D. ; Zhang, Guojie
    November 2020 marked 2 y since the launch of the Earth BioGenome Project (EBP), which aims to sequence all known eukaryotic species in a 10-y timeframe. Since then, significant progress has been made across all aspects of the EBP roadmap, as outlined in the 2018 article describing the project’s goals, strategies, and challenges (1). The launch phase has ended and the clock has started on reaching the EBP’s major milestones. This Special Feature explores the many facets of the EBP, including a review of progress, a description of major scientific goals, exemplar projects, ethical legal and social issues, and applications of biodiversity genomics. In this Introduction, we summarize the current status of the EBP, held virtually October 5 to 9, 2020, including recent updates through February 2021. References to the nine Perspective articles included in this Special Feature are cited to guide the reader toward deeper understanding of the goals and challenges facing the EBP.
  • Article
    Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis
    (Nature Publishing Group, 2014-07-11) Peng, Hanchuan ; Tang, Jianyong ; Xiao, Hang ; Bria, Alessandro ; Zhou, Jianlong ; Butler, Victoria ; Zhou, Zhi ; Gonzalez-Bellido, Paloma T. ; Oh, Seung W. ; Chen, Jichao ; Mitra, Ananya ; Tsien, Richard W. ; Zeng, Hongkui ; Ascoli, Giorgio A. ; Iannello, Giulio ; Hawrylycz, Michael ; Myers, Eugene ; Long, Fuhui
    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.