Cole
Julia
Cole
Julia
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleClimate variability, volcanic forcing, and last millennium hydroclimate extremes(American Meteorological Society, 2018-05-03) Stevenson, Samantha ; Overpeck, Jonathan T. ; Fasullo, John T. ; Coats, Sloan ; Parsons, Luke A. ; Otto-Bliesner, Bette ; Ault, Toby ; Loope, Garrison ; Cole, JuliaMultidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
-
ArticleUnderstanding ENSO diversity(American Meteorological Society, 2015-06) Capotondi, Antonietta ; Wittenberg, Andrew T. ; Newman, Matthew ; Di Lorenzo, Emanuele ; Yu, Jin-Yi ; Braconnot, Pascale ; Cole, Julia ; Dewitte, Boris ; Giese, Benjamin ; Guilyardi, Eric ; Jin, Fei-Fei ; Karnauskas, Kristopher B. ; Kirtman, Benjamin ; Lee, Tong ; Schneider, Niklas ; Xue, Yan ; Yeh, Sang-WookEl Niño–Southern Oscillation (ENSO) is a naturally occurring mode of tropical Pacific variability, with global impacts on society and natural ecosystems. While it has long been known that El Niño events display a diverse range of amplitudes, triggers, spatial patterns, and life cycles, the realization that ENSO’s impacts can be highly sensitive to this event-to-event diversity is driving a renewed interest in the subject. This paper surveys our current state of knowledge of ENSO diversity, identifies key gaps in understanding, and outlines some promising future research directions.