Romano
Tracy
Romano
Tracy
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleCharacterizing the culturable surface microbiomes of diverse marine animals(Oxford University Press, 2021-03-03) Keller, Abigail G. ; Apprill, Amy ; Lebaron, Philippe ; Robbins, Jooke ; Romano, Tracy ; Overton, Ellysia ; Rong, Yuying ; Yuan, Ruiyi ; Pollara, Scott B. ; Whalen, Kristen E.Biofilm-forming bacteria have the potential to contribute to the health, physiology, behavior and ecology of the host and serve as its first line of defense against adverse conditions in the environment. While metabarcoding and metagenomic information furthers our understanding of microbiome composition, fewer studies use cultured samples to study the diverse interactions among the host and its microbiome, as cultured representatives are often lacking. This study examines the surface microbiomes cultured from three shallow-water coral species and two whale species. These unique marine animals place strong selective pressures on their microbial symbionts and contain members under similar environmental and anthropogenic stress. We developed an intense cultivation procedure, utilizing a suite of culture conditions targeting a rich assortment of biofilm-forming microorganisms. We identified 592 microbial isolates contained within 15 bacterial orders representing 50 bacterial genera, and two fungal species. Culturable bacteria from coral and whale samples paralleled taxonomic groups identified in culture-independent surveys, including 29% of all bacterial genera identified in the Megaptera novaeangliae skin microbiome through culture-independent methods. This microbial repository provides raw material and biological input for more nuanced studies which can explore how members of the microbiome both shape their micro-niche and impact host fitness.
-
ArticleStranded beluga (Delphinapterus leucas) calf response and care: reports of two cases with different outcomes(Norwegian Polar Institute, 2021-11-26) Goertz, Caroline ; Woodie, Kathy ; Long, Brett ; Hartman, Lisa ; Gaglione, Eric ; Christen, Dennis ; Clauss, Tonya ; Flower, Jennifer ; Tuttle, Allison ; Richard, Carey ; Romano, Tracy ; Schmitt, Todd ; Otjen, Eric ; Osborn, Steve ; Aibel, Steve ; Binder, Tim ; Van Bonn, William ; Castellote, Manuel ; Mooney, T. Aran ; Dennison-Gibby, Sophie ; Burek-Huntington, Kathy ; Rowles, Teresa K.Given the remote, rugged areas belugas typically inhabit and the low rehabilitation success rate with any cetacean, it is rare to have the opportunity to rescue a live-stranded beluga. The Alaska SeaLife Center cared for two stranded beluga calves with two different outcomes. In 2012, a neonatal male beluga calf (DL1202) stranded following intense storms in Bristol Bay. In 2017, a helicopter pilot discovered a stranded male beluga calf (DL1705) during a flight over Cook Inlet. The Alaska SeaLife Center transported both calves for rehabilitation and utilized supportive care plans based on those for other species of stranded cetaceans and care of neonatal belugas at zoological facilities. Diagnostics included complete blood counts, serum chemistries, microbial cultures, hearing tests, imaging and morphometric measurements to monitor systemic health. Treatments included in-pool flotation support; antimicrobials; gastrointestinal support; and close monitoring of respirations, urination, defecation and behaviour. After three weeks of supportive care, the Bristol Bay calf (DL1202) succumbed to sepsis secondary to a possible prematurity-related lack of passive transfer of antibodies. After seven weeks, the Cook Inlet calf (DL1705) recovered and all medications were discontinued. Unable to survive on his own, he was declared non-releasable and placed in long-term care at a zoological facility, to live with other belugas. Aspects and details from successful cases of cetacean critical care become important references especially vital for the survival of essential animals in small, endangered populations.
-
ArticlePrevalence of influenza A virus in live-captured North Atlantic gray seals : a possible wild reservoir(Nature Publishing Group, 2016-08-03) Puryear, Wendy Blay ; Keogh, Mandy ; Hill, Nichola ; Moxley, Jerry ; Josephson, Elizabeth ; Davis, Kimberly Ryan ; Bandoro, Christopher ; Lidgard, Damian ; Bogomolni, Andrea L. ; Levin, Milton ; Lang, Shelley ; Hammill, Michael ; Bowen, Don ; Johnston, David W. ; Romano, Tracy ; Waring, Gordon T. ; Runstadler, JonathanInfluenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups. There was an overall viral prevalence of 9.0% (95% confidence interval (CI): 6.4%–12.5%) in weaned pups and 5.3% (CI: 1.2%–14.6%) in adults, with seroprevalences of 19.3% (CI: 15.0%–24.5%) and 50% (CI: 33.7%–66.4%), respectively. Positive sera showed a broad reactivity to diverse influenza subtypes. IAV status did not correlate with measures of animal health nor impact animal movement or foraging. This study demonstrated that Northwest Atlantic gray seals are both permissive to and tolerant of diverse IAV, possibly representing an endemically infected wild reservoir population.