Zhong Yisen

No Thumbnail Available
Last Name
Zhong
First Name
Yisen
ORCID
0000-0003-0741-8963

Search Results

Now showing 1 - 2 of 2
  • Article
    Dynamical controls of the eastward transport of overwintering Calanus finmarchicus from the Lofoten Basin to the Continental Slope
    (American Geophysical Union, 2022-09-06) Dong, Huizi ; Zhou, Meng ; Smith, Walker O. ; Li, Baosheng ; Hu, Ziyuan ; Basedow, Sünnje L. ; Gaardsted, Frank ; Zhang, Zhaoru ; Zhong, Yisen
    iapausing populations of Calanus finmarchicus at depth in the Lofoten Basin (LB) return to the continental shelf and slope off the Lofoten-Vesterålen Islands during the phytoplankton spring bloom to feed and spawn, forming surface swarms with a great abundance. To study how overwintering populations of C. finmarchicus move with the deep currents and return to the shelf, Lagrangian transport characteristics of particles in deep water between 2008 and 2019 were analyzed using Global Ocean Reanalysis and Simulation re-analysis data and Lagrangian Coherent Structures (LCSs). Our analyses revealed that persistent eastward transport of diapausing C. finmarchicus between LB and continental slope occurred mainly between 600 and 1,100 m in the Arctic Intermediate Water. The consistency of the vertical distributions of C. finmarchicus abundance and salinity further suggests that physical factors control the horizontal distribution of the species. Hovmöller diagrams of kinetic energy indicate that there is an eastward advection of mean current at depth. The co-occurrence between the eastward transport of LCSs and the eastward advection of the mean current provides direct evidence that the life history of C. finmarchicus is subjected to physical control in the Norwegian Sea.
  • Article
    Review of oceanic mesoscale processes in the North Pacific: physical and biogeochemical impacts
    (Elsevier, 2023-02-20) Ueno, Hiromichi ; Bracco, Annalisa ; Barth, John A. ; Budyansky, Maxim V. ; Hasegawa, Daisuke ; Itoh, Sachihiko ; Kim, Sung Yong ; Ladd, Carol ; Lin, Xiaopei ; Park, Young-Gyu ; Prants, Sergey ; Ross, Tetjana ; Rypina, Irina I. ; Sasai, Yoshikazu ; Trusenkova, Olga O. ; Ustinova, Elena I. ; Zhong, Yisen
    Mesoscale eddies impact the marine ecosystem of the North Pacific and its marginal Seas.•Impacts vary with time and regions. Knowns and unknowns are summarized.•How climate change will modify mesoscale processes remains a key open challenge.Physical transport dynamics occurring at the ocean mesoscale (∼20 km – 200 km) largely determine the environment in which biogeochemical processes occur. As a result, understanding and modeling mesoscale transport is crucial for determining the physical modulations of the marine ecosystem. This review synthesizes current knowledge of mesoscale eddies and their impacts on the marine ecosystem across most of the North Pacific and its marginal Seas. The North Pacific domain north of 20°N is divided in four regions, and for each region known, unknowns and known-unknowns are summarized with a focus on physical properties, physical-biogeochemical interactions, and the impacts of climate variability and change on the eddy field and on the marine ecosystem.