Gawarkiewicz
Glen G.
Gawarkiewicz
Glen G.
No Thumbnail Available
88 results
Search Results
Now showing
1 - 20 of 88
-
ArticleIncreasing frequency of mid‐depth salinity maximum intrusions in the Middle Atlantic Bight(American Geophysical Union, 2022-06-22) Gawarkiewicz, Glen G. ; Fratantoni, Paula S. ; Bahr, Frank B. ; Ellertson, AubreyShelfbreak exchange processes have been studied extensively in the Middle Atlantic Bight. An important process occurring during stratified conditions is the Salinity Maximum Intrusion. These features are commonly observed at the depth of the seasonal pycnocline, and less frequently at the surface and bottom. Data collected from NOAA's National Marine Fisheries Service Ecosystem Monitoring program as well as data collected from the fishing industry in Rhode Island show that the middepth intrusions are now occurring much more frequently than was reported in a previous climatology of the intrusions (Lentz, 2003, https://doi.org/10.1029/2003JC001859). The intrusions have a greater salinity difference from ambient water and penetrate large distances shoreward of the shelf break relative to the earlier climatology. The longer term data from the Ecosystem Monitoring program indicates that the increase in frequency occurred in 2000, and thus may be linked to a recent regime shift in the annual formation rate of Warm Core Rings by the Gulf Stream. Given the increased frequency of these salty intrusions, it will be necessary to properly resolve this process in numerical simulations in order to account for salt budgets for the continental shelf and slope.
-
ArticleDynamics of the direct intrusion of Gulf Stream ring water onto the Mid-Atlantic Bight shelf(John Wiley & Sons, 2015-09-30) Zhang, Weifeng G. ; Gawarkiewicz, Glen G.Onshore intrusions of offshore waters onto the Mid-Atlantic Bight shelf can greatly affect shelf circulation, biogeochemistry, and fisheries. Previous studies have concentrated on onshore intrusions of slope water. Here we present a direct intrusion of Gulf Stream warm-core ring water onto the shelf representing a previously unknown exchange process at the shelfbreak. Impingement of warm-core rings at the shelfbreak generates along-isobath intrusions that grow like Pinocchio's nose, extending hundreds of kilometers to the southwest. By combining satellite and Ocean Observatory Initiative Pioneer Array data and idealized numerical simulations, we discover that the intrusion results from topographically induced vorticity variation of the ring water, rather than from entrainment of the shelfbreak frontal jet. This intrusion of the Gulf Stream ring water has important biogeochemical implications and could facilitate migration of marine species across the shelfbreak barrier and transport low-nutrient surface Gulf Stream ring water to the otherwise productive shelfbreak region.
-
ArticleLong distance passive localization of vocalizing sei whales using an acoustic normal mode approach(Acoustical Society of America, 2012-02) Newhall, Arthur E. ; Lin, Ying-Tsong ; Lynch, James F. ; Baumgartner, Mark F. ; Gawarkiewicz, Glen G.During a 2 day period in mid-September 2006, more than 200, unconfirmed but identifiable, sei whale (Balaenoptera borealis) calls were collected as incidental data during a multidisciplinary oceanography and acoustics experiment on the shelf off New Jersey. Using a combined vertical and horizontal acoustic receiving array, sei whale movements were tracked over long distances (up to tens of kilometers) using a normal mode back propagation technique. This approach uses low-frequency, broadband passive sei whale call receptions from a single-station, two-dimensional hydrophone array to perform long distance localization and tracking by exploiting the dispersive nature of propagating normal modes in a shallow water environment. The back propagation approach is examined for accuracy and application to tracking the sei whale vocalizations identified in the vertical and horizontal array signals. This passive whale tracking, combined with the intensive oceanography measurements performed during the experiment, was also used to examine sei whale movements in relation to oceanographic features observed in this region.
-
ArticleObserving larval transport processes affecting population connectivity : progress and challenges(Oceanography Society, 2007-09) Gawarkiewicz, Glen G. ; Monismith, Stephen G. ; Largier, JohnPopulation connectivity is inherently bio-physical: it is determined by physical transport and dispersion, as well as biological processes such as timing of spawning, larval behavior, and mortality. Knowledge of connectivity is essential for understanding ecosystem responses to changing environmental conditions. It establishes the spatial scales over which a population is connected, and in turn the primary spatial scale of population interactions and ecosystem dynamics. Concepts in population connectivity were initially developed in terrestrial ecology, where dispersal may occur at different life stages. In the simplest form, a one-dimensional dispersal curve describes the distribution of settlers away from a source region as a function of distance. As this spatial distribution varies in time, the “dispersal kernel” defines a spatial probability density function of settlers aggregated over time (see, e.g., Okubo and Levin, 2002). This dispersal kernel may be three dimensional, but is often reduced to two dimensions (e.g., animals on a plain) or one dimension (e.g., animals living along the land-water interface).
-
ArticleLength scale of the finite-amplitude meanders of shelfbreak fronts(American Meteorological Society, 2015-10) Zhang, Weifeng G. ; Gawarkiewicz, Glen G.Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
-
ArticleShelfbreak jet structure and variability off New Jersey using ship of opportunity data from the CMV Oleander(American Geophysical Union, 2020-08-30) Forsyth, Jacob S. T. ; Andres, Magdalena ; Gawarkiewicz, Glen G.Repeat measurements of velocity and temperature profiles from the Container Motor Vessel (CMV) Oleander provide an unprecedented look into the variability on the New Jersey Shelf and upper continental slope. Here 1362 acoustic Doppler current profiler (ADCP) velocity sections collected between 1994 and 2018 are analyzed in both Eulerian and stream coordinate reference frames to characterize the mean structure of the Shelfbreak Jet, as well as its seasonal to decadal variability. The Eulerian mean Shelfbreak Jet has a maximum jet velocity of 0.12 m s−1. The maximum jet velocity peaks in April and May and reaches its minimum in July and August. In a stream coordinate framework, the jet is only identified in 61% of transects, and the mean stream coordinate Shelfbreak Jet has a maximum jet velocity of 0.32 m s−1. Evidence is found that Warm Core Rings, originating from the Gulf Stream arriving in the Slope Sea adjacent to the New Jersey Shelf, shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet's flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf 2 months later. When considered in a stream coordinate framework, Shelfbreak Jet have decreased over the time period considered in the study.
-
ArticleHow is New England coastal sea level related to the Atlantic meridional overturning circulation at 26 degrees N?(American Geophysical Union, 2019-05-01) Piecuch, Christopher G. ; Dangendorf, Sönke ; Gawarkiewicz, Glen G. ; Little, Christopher M. ; Ponte, Rui M. ; Yang, JiayanMonthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability in ζ is anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N and ζ changes arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated with ζ. This interpretation contrasts with past studies that understood ζ and AMOC as being in geostrophic balance with one another.
-
ArticleHorizontal scales of variability over the Middle Atlantic Bight shelf break and continental rise from finescale observations(American Meteorological Society, 2013-01) Todd, Robert E. ; Gawarkiewicz, Glen G. ; Owens, W. BrechnerObservations with fine horizontal resolution are used to identify the horizontal scales of variability over the Middle Atlantic Bight (MAB) shelf break and continental rise. Spray gliders collected observations along two alongshelf transects over the continental rise in March–April 2006 and along 16 cross-shelf transects over the shelf break and continental rise during July–October 2007. Horizontal resolution varied from 1 km or finer over the shelf to 6 km in deep water. These observations allow horizontal thermohaline variability offshore of the MAB shelf break to be examined for the first time. Structure functions of temperature and salinity, the mean square difference between observations separated by specified distances, reveal the horizontal spatial scales in the region. Exponential (e-folding) scales of temperature and salinity increase from 8–13 km near the shelf break to about 30 km over the continental rise. Just offshore of the shelf break, alongshelf structure functions exhibit periodicity with a 40–50-km wavelength that matches the wavelength of shelfbreak frontal meanders. Farther offshore, alongshelf structure functions suggest a dominant wavelength of 175–250 km, but these scales are only marginally resolved by the available observations. Examination of structure functions of along-isopycnal salinity (i.e., spice) suggests that interleaving of shelf and slope water masses contributes most of the horizontal variability near the MAB shelf break, but heaving of isopycnals is the primary source of horizontal variability over the continental rise.
-
PreprintHigh-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles( 2016-05) Grothues, Thomas ; Newhall, Arthur E. ; Lynch, James F. ; Vogel, Kaela S. ; Gawarkiewicz, Glen G.A dichotomy between depth penetration and resolution as a function of sonar frequency, draw resolution, and beam spread challenges fish target classification from sonar. Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys. This widely available tool with a pedigree for bottom mapping is not commonly applied to fish reconnaissance and requires the development of an interpretation of pelagic reflective features, revisitation of count methods, image-processing rather than wave-form recognition for automation, and an understanding of bias. In a series of AUV mission test cases, side-scan sonar (600 and 900 kHz) returns often resolved individual school members, spacing, size, behavior, and (infrequently) species from anatomical features and could be intuitively classified by ecologists — but also produced artifacts. Fish often followed the AUV and thus were videographed, but in doing so removed themselves from the sonar aperture. AUV-supported high-frequency side-scan holds particular promise for survey of scarce, large species or for synergistic investigation of predators and their prey because the spatial scale of observations may be similar to those of predators.
-
Technical ReportPreliminary acoustic and oceanographic observations from the ASIAEX 2001 South China Sea Experiment(Woods Hole Oceanographic Institution, 2001-09) Newhall, Arthur E. ; Costello, Lawrence ; Duda, Timothy F. ; Dunn, James M. ; Gawarkiewicz, Glen G. ; Irish, James D. ; Kemp, John N. ; McPhee, Neil M. ; Liberatore, Stephen P. ; Lynch, James F. ; Ostrom, William M. ; Schroeder, Ted ; Trask, Richard P. ; von der Heydt, KeithThe Asian Seas International Experiment (ASIAEX) was a very successful scientific collaboration between the United States of America (USA), the People’s Republic of China (PRC), Taiwan (ROC), the Republic of Korea (ROK), Japan, Russia, and Singapore. Preliminary field experiments associated with ASIAEX began in spring of 2000. The main experiments were performed in April-August, 2001. The scientific plan called for two major acoustics experiments, the first a bottom interaction experiment in the East China Sea (ECS) and the second a volume interaction experiment in the South China Sea (SCS). In addition to the acoustics efforts, there were also extremely strong physical oceanography and geology and geophysics components to the experiments. This report will concentrate on describing the moored component of the South China Sea portion of ASIAEX 2001 performed from the Taiwan Fisheries research vessel FR1 (Fisheries Researcher 1). Information on the environmental moorings deployed from the Taiwanese oceanographic research vessel OR1 (Oceanographic Researcher 1) will also be listed here for completeness, so that the reader can pursue later analyses of the data. This report does not pursue any data analyses per se.
-
ArticleLong-term SST variability on the Northwest Atlantic continental shelf and slope(American Geophysical Union, 2020-01-06) Chen, Zhuomin ; Kwon, Young-Oh ; Chen, Ke ; Fratantoni, Paula S. ; Gawarkiewicz, Glen G. ; Joyce, Terrence M.The meridional coherence, connectivity, and regional inhomogeneity in long‐term sea surface temperature (SST) variability over the Northwest Atlantic continental shelf and slope from 1982–2018 are investigated using observational data sets. A meridionally concurrent large SST warming trend is identified as the dominant signal over the length of the continental shelf and slope between Cape Hatteras in North Carolina and Cape Chidley, Newfoundland and Labrador, Canada. The linear trends are 0.37 ± 0.06 and 0.39 ± 0.06 °C/decade for the shelf and slope regions, respectively. These meridionally averaged SST time series over the shelf and slope are consistent with each other and across multiple longer observational data sets with records dating back to 1900. The coherence between the long‐term meridionally averaged time series over the shelf and slope and basin‐wide averaged SST in the North Atlantic implies approximately two thirds of the warming trend during 1982–2018 may be attributed to natural climate variability and the rest to externally forced change including anthropogenic warming.
-
Technical ReportHydrographic study of Buzzards Bay, 1982-1983(Woods Hole Oceanographic Institution, 1984-02) Rosenfeld, Leslie K. ; Signell, Richard P. ; Gawarkiewicz, Glen G.A series of four hydrographic cruises at three-month intervals was undertaken in Buzzards Bay in 1982-83. Buzzards Bay is located on the southern coast of Massachusetts, west of Cape Cod. Listings and vertical profiles of one-meter-averaged values of temperatures, salinity, sigma-t and light transmission are presented. Selected vertical cross-sections of temperature, salinity and sigma-t are also included, as are horizontal maps of the same variables at depths of 1 m and 8 m.
-
ArticleTrends in physical properties at the southern New England shelf break(American Geophysical Union, 2020-01-21) Harden, Benjamin E. ; Gawarkiewicz, Glen G. ; Infante, MiaWe analyze 11 years (2003–2013) of repeat temperature and salinity sections from across the New England shelf break south of Cape Cod during early summer (June–July). The mean sections resolved the shelf break front which supports the Shelf Break Jet, a vital component of the regional circulation. Individual sections showed a great deal of variability associated with meanders in the shelf break front consistent with previous studies in the region. Over the 11 year record, the shelf region (inshore of the 100 m isobath) warmed by 0.26 °C yr -1, with the majority of this warming occurring shallower than 20 m (0.58 °C yr -1). The full‐depth trend agrees well with previous studies of shelf warming to the north and the south of our study region. The temperature and salinity of the offshore edge of the Cold Pool Water on the shelf did not change significantly during this period. The surface warming on the shelf resulted in a decrease in near‐surface density of 0.12 kg m -3 yr -1 and an increase in stratification between 10 and 15 m of 6.7 X 10(-5) S -2 yr -1 . Offshore of the shelf break, the Slope Water also warmed and became more saline by 0.21 °C yr -1 and 0.04 yr -1 respectively, resulting in a maximal reduction in density of 0.01 kg m -3 yr -1. In the Shelf Break Front, there is some evidence of freshening and a reduction in density, which may have resulted from an offshore shift in the Cold Pool but the statistical significance is small.
-
ArticleExperimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan(IEEE, 2015-01-09) Lin, Ying-Tsong ; Duda, Timothy F. ; Emerson, Chris ; Gawarkiewicz, Glen G. ; Newhall, Arthur E. ; Calder, Brian ; Lynch, James F. ; Abbot, Philip A. ; Yang, Yiing-Jang ; Jan, SenA study of sound propagation over a submarine canyon northeast of Taiwan was made using mobile acoustic sources during a joint ocean acoustic and physical oceanographic experiment in 2009. The acoustic signal levels (equivalently, transmission losses) are reported here, and numerical models of 3-D sound propagation are employed to explain the underlying physics. The data show a significant decrease in sound intensity as the source crossed over the canyon, and the numerical model provides a physical insight into this effect. In addition, the model also suggests that reflection from the canyon seabed causes 3-D sound focusing when the direction of propagation is along the canyon axis, which remains to be validated in a future experiment. Environmental uncertainties of water sound speed, bottom geoacoustic properties, and bathymetry are addressed, and the implications for sound propagation prediction in a complex submarine canyon environment are also discussed.
-
ArticleAutonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts(Oceanography Society, 2017-06) Goni, Gustavo J. ; Todd, Robert E. ; Jayne, Steven R. ; Halliwell, George R. ; Glenn, Scott ; Dong, Jili ; Curry, Ruth G. ; Domingues, Ricardo ; Bringas, Francis ; Centurioni, Luca R. ; DiMarco, Steven F. ; Miles, Travis ; Morell, Julio M. ; Pomales, Luis ; Kim, Hyun-Sook ; Robbins, Pelle E. ; Gawarkiewicz, Glen G. ; Wilkin, John L. ; Heiderich, Joleen ; Baltes, Rebecca ; Cione, Joseph J. ; Seroka, Greg ; Knee, Kelly ; Sanabia, ElizabethThe tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.
-
ArticleThe interannual variability of the breakdown of fall stratification on the New Jersey Shelf(John Wiley & Sons, 2018-09-12) Forsyth, Jacob S. T. ; Gawarkiewicz, Glen G. ; Andres, Magdalena ; Chen, KeDuring the seasonal evolution of stratification on the New Jersey shelf in the fall, strong thermal stratification that was established in the preceding summer is broken down through wind‐driven processes and surface cooling. Ten years of output from a Regional Ocean Modeling Systems run and a one‐dimensional mixed layer model is used here to examine the interannual variability in the strength of the stratification and in the processes that reduce stratification in fall. Our analysis shows that the strength of the stratification at the end of the summer is not correlated with the timing of shelf destratification. This indicates that processes that occur within the fall are more important for the timing of stratification breakdown than are the initial fall conditions. Furthermore, wind‐driven processes reduce a greater fraction of the stratification in each year than does the surface cooling during the fall. Winds affect the density gradients on the shelf through both changes to the temperature and salinity fields. Processes associated with the downwelling‐favorable winds are more effective than those during upwelling‐favorable winds in breaking down the vertical density gradients. In the first process, cross‐shelf advective fluxes during storms act to decrease stratification during downwelling‐favorable winds and increase stratification during upwelling‐favorable winds. Second, there is also enhanced velocity shear during downwelling‐favorable winds, which allows for more shear instabilities that break down stratification via mixing. Observational data and model output from Tropical Storm Ernesto compare favorably and suggest that downwelling‐favorable winds act through the mechanisms identified from the Regional Ocean Modeling Systems results.
-
ArticleSeasonal evolution of oceanic upper layer processes in the northern Bay of Bengal following a single Argo float(American Geophysical Union, 2019-04-24) Shee, Abhijit ; Sil, Sourav ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Ravichandran, M.Seasonal evolution of the barrier layer (BL) and temperature inversion in the northern Bay of Bengal and their role on the mixed layer temperature (MLT) is examined using observations from a single Argo during December 2013 to July 2017. During fall, low salinity at surface generates BL in this region. It thickens to almost 80 m in winter enhanced by deepening of isothermal layer depth due to remote forcing. During winter, surface cooling lowers near‐surface temperature, and thus, the subsurface BL experiences a significant temperature inversion (~2.5 °C). This temperature inversion diffuses to distribute heat within ML and surface heating begins deep penetration of shortwave radiation through ML during spring. Hence, the ML becomes thermally well stratified, resulting in the warmest MLT. The Monin‐Obukhov length attains its highest value during summer indicating wind dominance in the ML. During spring and fall, upper ocean gains heat allowing buoyancy to dominate over wind mixing.
-
ArticleCorrigendum to “Nutrient supply in the Southern East China Sea after Typhoon Morakot”(Sears Foundation for Marine Research, 2013-11-01) Hung, Chin-Chang ; Chung, Chih-Ching ; Gong, Gwo-Ching ; Jan, Sen ; Tsai, Ya-Ling ; Chen, Kuo-Shu ; Chou, Wen Chen ; Lee, Ming-An ; Chang, Yi ; Chen, Meng-Hsien ; Yang, Wen-Rong ; Tseng, Chiung-Jung ; Gawarkiewicz, Glen G.
-
ArticleThe changing nature of shelf-break exchange revealed by the OOI Pioneer Array(The Oceanography Society, 2018-02-09) Gawarkiewicz, Glen G. ; Todd, Robert E. ; Zhang, Weifeng G. ; Partida, Jacob ; Gangopadhyay, Avijit ; Monim, Mahmud-Ul-Hasan ; Fratantoni, Paula S. ; Mercer, Anna Malek ; Dent, MargaretAlthough the continental shelf and slope south of New England have been the subject of recent studies that address decadal-scale warming and interannual variability of water mass properties, it is not well understood how these changes affect shelf-break exchange processes. In recent years, observations of anomalous shelf and slope conditions obtained from the Ocean Observatories Initiative Pioneer Array and other regional observing programs suggest that onshore intrusions of warm, salty waters are becoming more prevalent. Mean cross-shelf transects constructed from Pioneer Array glider observations collected from April 2014 through December 2016 indicate that slope waters have been warmer and saltier. We examine shelf-break exchange events and anomalous onshore intrusions of warm, salty water associated with warm core rings located near the shelf break in spring 2014 and winter 2017 using observations from the Pioneer Array and other sources. We also describe an additional cross-shelf intrusion of ring water in September 2014 to demonstrate that the occurrence of high-salinity waters extending across the continental shelf is rare. Observations from the Pioneer Array and other sources show warm core ring and Gulf Stream water masses intrude onto the continental shelf more frequently and penetrate further onshore than in previous decades.
-
ArticleOn whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak(Acoustical Society of America, 2012-02) Lynch, James F. ; Emerson, Chris ; Abbot, Philip A. ; Gawarkiewicz, Glen G. ; Newhall, Arthur E. ; Lin, Ying-Tsong ; Duda, Timothy F.To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track. The circle radii were 7.5 km. Data are from September 8, 2006. Details of the acoustic and environmental measurements are presented. Simple analytic and computer models are used to assess the variability expected due to the ocean and seabed conditions encountered. A comparison of model results and data is made, which shows preliminary consistency between the data and the models, but also points towards further work that should be undertaken specifically in enlarging the range and frequency parameter space, and in looking at integrated transmission loss.