Karchner Sibel I.

No Thumbnail Available
Last Name
Karchner
First Name
Sibel I.
ORCID

Search Results

Now showing 1 - 20 of 21
  • Article
    Role of DNA methylation in altered gene expression patterns in adult zebrafish (Danio rerio) exposed to 3, 3’, 4, 4’, 5-pentachlorobiphenyl (PCB 126)
    (Oxford University Press, 2018-04-13) Aluru, Neelakanteswar ; Karchner, Sibel I. ; Krick, Keegan S. ; Zhu, Wei ; Liu, Jiang
    There is growing evidence that environmental toxicants can affect various physiological processes by altering DNA methylation patterns. However, very little is known about the impact of toxicant-induced DNA methylation changes on gene expression patterns. The objective of this study was to determine the genome-wide changes in DNA methylation concomitant with altered gene expression patterns in response to 3, 3’, 4, 4’, 5-pentachlorobiphenyl (PCB126) exposure. We used PCB126 as a model environmental chemical because the mechanism of action is well-characterized, involving activation of aryl hydrocarbon receptor, a ligand-activated transcription factor. Adult zebrafish were exposed to 10 nM PCB126 for 24 h (water-borne exposure) and brain and liver tissues were sampled at 7 days post-exposure in order to capture both primary and secondary changes in DNA methylation and gene expression. We used enhanced Reduced Representation Bisulfite Sequencing and RNAseq to quantify DNA methylation and gene expression, respectively. Enhanced reduced representation bisulfite sequencing analysis revealed 573 and 481 differentially methylated regions in the liver and brain, respectively. Most of the differentially methylated regions are located more than 10 kilobases upstream of transcriptional start sites of the nearest neighboring genes. Gene Ontology analysis of these genes showed that they belong to diverse physiological pathways including development, metabolic processes and regeneration. RNAseq results revealed differential expression of genes related to xenobiotic metabolism, oxidative stress and energy metabolism in response to polychlorinated biphenyl exposure. There was very little correlation between differentially methylated regions and differentially expressed genes suggesting that the relationship between methylation and gene expression is dynamic and complex, involving multiple layers of regulation.
  • Article
    The landscape of extreme genomic variation in the highly adaptable Atlantic killifish
    (Oxford University Press, 2017-03-01) Reid, Noah M. ; Jackson, Craig E. ; Gilbert, Don ; Minx, Patrick ; Montague, Michael J. ; Hampton, Thomas H. ; Helfrich, Lily W. ; King, Benjamin L. ; Nacci, Diane E. ; Aluru, Neelakanteswar ; Karchner, Sibel I. ; Colbourne, John K. ; Hahn, Mark E. ; Shaw, Joseph R. ; Oleksiak, Marjorie F. ; Crawford, Douglas L. ; Warren, Wesley C. ; Whitehead, Andrew
    Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
  • Preprint
    Sequence and functional characterization of hypoxia inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, Fundulus heteroclitus
    ( 2016-11) Townley, Ian K. ; Karchner, Sibel I. ; Skripnikova, Elena ; Wiese, Thomas E. ; Hahn, Mark E. ; Rees, Bernard B.
    The hypoxia inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus occurs in habitats prone to hypoxia, it responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, 2α, and 3α independently formed complexes with the β subunit (ARNT) to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α, HIF2αb, a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations.
  • Article
    Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family
    (National Academy of Sciences, 1997-12) Hahn, Mark E. ; Karchner, Sibel I. ; Shapiro, Miriam A. ; Perera, Samanthi A.
    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
  • Preprint
    Nrf2 and Nrf2-related proteins in development and developmental toxicity : insights from studies in zebrafish (Danio rerio)
    ( 2015-06-15) Hahn, Mark E. ; Timme-Laragy, Alicia R. ; Karchner, Sibel I. ; Stegeman, John J.
    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
  • Preprint
    Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds
    ( 2012-07-17) Farmahin, Reza ; Manning, Gillian E. ; Crump, Doug ; Wu, Dongmei ; Mundy, Lukas J. ; Jones, Stephanie P. ; Hahn, Mark E. ; Karchner, Sibel I. ; Giesy, John P. ; Bursian, Steven J. ; Zwiernik, Matthew J. ; Fredricks, Timothy B. ; Kennedy, Sean W.
    The sensitivity of avian species to the toxic effects of dioxin-like compounds (DLCs) varies up to 1000-fold among species and this variability has been associated with inter-species differences in aryl hydrocarbon receptor 1 ligand binding domain (AHR1 LBD) sequence. We previously showed that LD50 values, based on in ovo exposures to DLCs, were significantly correlated with in vitro EC50 values obtained with a luciferase reporter gene (LRG) assay that measures AHR1-mediated induction of cytochrome P4501A in COS-7 cells transfected with avian AHR1 constructs. Those findings suggest that the AHR1 LBD sequence and the LRG assay can be used to predict avian species sensitivity to DLCs. In the present study, the AHR1 LBD sequences of 86 avian species were studied and differences at amino acid sites 256, 257, 297, 324, 337 and 380 were identified. Site-directed mutagenesis, the LRG assay and homology modeling highlighted the importance of each amino acid site in AHR1 sensitivity to 2,3,8,8-tetrachlorodibenzo-p-dioxin and other DLCs. The results of the study revealed that: (1) only amino acids at sites 324 and 380 affect the sensitivity of AHR1 expression constructs of 86 avian species to DLCs and (2) in vitro luciferase activity in AHR1 constructs containing only the LBD of the species of interest is significantly correlated (r2 = 0.93, p<0.0001) with in ovo toxicity data for those species. These results indicate promise for the use of AHR1 LBD amino acid sequences independently, or combined with the LRG assay, to predict avian species sensitivity to DLCs.
  • Preprint
    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics
    ( 2007-09-01) Burnett, Karen G. ; Bain, Lisa J. ; Baldwin, William S. ; Callard, Gloria V. ; Cohen, Sarah ; Di Giulio, Richard T. ; Evans, David H. ; Gomez-Chiarri, Marta ; Hahn, Mark E. ; Hoover, Cindi A. ; Karchner, Sibel I. ; Katoh, Fumi ; MacLatchy, Deborah L. ; Marshall, William S. ; Meyer, Joel N. ; Nacci, Diane E. ; Oleksiak, Marjorie F. ; Rees, Bernard B. ; Singer, Thomas D. ; Stegeman, John J. ; Towle, David W. ; Van Veld, Peter A. ; Vogelbein, Wolfgang K. ; Whitehead, Andrew ; Winn, Richard N. ; Crawford, Douglas L.
    A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.
  • Article
    Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site
    (BioMed Central, 2011-05-24) Oleksiak, Marjorie F. ; Karchner, Sibel I. ; Jenny, Matthew J. ; Franks, Diana G. ; Mark Welch, David B. ; Hahn, Mark E.
    Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive). Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing). The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.
  • Preprint
    Integrating monitoring and genetic methods to infer historical risks of PCBs and DDE to common and roseate terns nesting near the New Bedford Harbor Superfund site (Massachusetts, USA)
    ( 2016-09) Nacci, Diane E. ; Hahn, Mark E. ; Karchner, Sibel I. ; Jayaraman, Saro ; Mostello, Carolyn ; Miller, Kenneth M. ; Blackwell, Carma Gilchrist ; Nisbet, Ian C. T.
    Common and roseate terns are migratory piscivorous seabirds with major breeding colonies within feeding range of the PCB-contaminated New Bedford Harbor (NBH, MA, USA) Superfund site. Our longitudinal study shows that before PCB discharges into NBH ceased (late 1970s), tern eggs had very high but variable PCB concentrations. But egg concentrations of PCBs as well as DDE, the degradation product of the ubiquitous global contaminant DDT, have since declined. Rate constants for temporal decline of PCB congeners in tern eggs varied inversely with log10KOW (n-octanol-water partition coefficient), shifting egg congener patterns away from those characterizing NBH sediment. To estimate the toxic effects on tern eggs of PCB dioxin-like congener (DLC) exposures, we extrapolated published laboratory data on common terns to roseate terns by characterizing genetic and functional similarities in species aryl-hydrocarbon receptors (AHRs), which mediate DLC sensitivity. Our assessment of contaminant risks suggests that terns breeding near NBH were exposed historically to toxic levels of PCBs and DDE; however, acute effects on tern egg development have become less likely since the 1970s. Our approach demonstrates how comparative genetics at target loci can effectively increase the range of inference for chemical risk assessments from tested to untested and untestable species.
  • Preprint
    Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor
    ( 2014-12) Grans, Johanna ; Wassmur, Britt ; Fernandez-Santoscoy, María ; Zanette, Juliano ; Woodin, Bruce R. ; Karchner, Sibel I. ; Nacci, Diane E. ; Champlin, Denise ; Jayaraman, Saro ; Hahn, Mark E. ; Stegeman, John J. ; Celander, Malin C.
    Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ~400 times higher, and the levels of non-dioxin-like PCBs ~3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased expression of hepatic PXR, CYP3A and Pgp genes upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal expression of these genes between the two populations. In SC fish, but not in NBH fish, there was increased expression of branchial PXR and CYP3A upon exposure to PCB126 and of CYP3A upon exposure to PCB153. The results suggest a difference between the two populations in non-AhR transcription factor signaling in liver and gills, and that this could involve killifish PXR. It also implies possible cross-regulatory interactions between that factor (presumably PXR) and AhR2 in liver of these fish.
  • Preprint
    Development and characterization of polyclonal antibodies against the aryl hydrocarbon receptor protein family (AHR1, AHR2, and AHR repressor) of Atlantic killifish Fundulus heteroclitus
    ( 2005-12-20) Merson, Rebeka R. ; Franks, Diana G. ; Karchner, Sibel I. ; Hahn, Mark E.
    The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.
  • Preprint
    Diversity as opportunity : insights from 600 million years of AHR evolution
    ( 2017-02) Hahn, Mark E. ; Karchner, Sibel I. ; Merson, Rebeka R.
    The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
  • Article
    The molecular basis for differential dioxin sensitivity in birds : role of the aryl hydrocarbon receptor
    (National Academy of Sciences, 2006-04-10) Karchner, Sibel I. ; Franks, Diana G. ; Kennedy, Sean W. ; Hahn, Mark E.
    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix–loop–helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [3H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxin-like compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.
  • Preprint
    Role of DNA methylation of AHR1 and AHR2 promoters in differential sensitivity to PCBs in Atlantic Killifish, Fundulus heteroclitus
    ( 2010-10) Aluru, Neelakanteswar ; Karchner, Sibel I. ; Hahn, Mark E.
    Atlantic killifish (Fundulus heteroclitus) inhabiting the PCB-contaminated Superfund site in New Bedford Harbor (MA, USA) have evolved genetic resistance to the toxic effects of these compounds. They also lack induction of cytochrome P4501A (CYP1A) and other aryl hydrocarbon receptor (AHR)-dependent responses after exposure to AHR agonists, suggesting an overall down-regulation of the AHR signaling pathway. In this study, we hypothesized that the genetic resistance is due to altered AHR expression resulting from hypermethylation of DNA in the promoter region of AHR genes in fish inhabiting New Bedford Harbor. To test this hypothesis, we cloned and sequenced AHR1 and AHR2 promoter regions and employed bisulfite conversion-polymerase chain reaction (BS-PCR) followed by clonal analysis to compare the methylation status of CpG islands of AHR1 and AHR2 in livers of adult killifish collected from New Bedford Harbor and a reference site (Scorton Creek, MA). No significant differences in methylation profiles were observed in either AHR1 or AHR2 promoter regions between NBH and SC fish. However, hypermethylation of the AHR1 promoter correlated with low expression of transcripts in the liver in both populations. In comparison to AHR1, hepatic mRNA expression of AHR2 is high and its promoter is hypomethylated. Taken together, our results suggest that genetic resistance to contaminants in NBH fish is not due to altered methylation of AHR promoter regions, but that promoter methylation may control tissue-specific expression of AHR genes in killifish.
  • Article
    The African coelacanth genome provides insights into tetrapod evolution
    (Nature Publishing Group, 2013-04-17) Amemiya, Chris T. ; Alfoldi, Jessica ; Lee, Alison P. ; Fan, Shaohua ; Philippe, Herve ; MacCallum, Iain ; Braasch, Ingo ; Manousaki, Tereza ; Schneider, Igor ; Rohner, Nicolas ; Organ, Chris ; Chalopin, Domitille ; Smith, Jeramiah J. ; Robinson, Mark ; Dorrington, Rosemary A. ; Gerdol, Marco ; Aken, Bronwen ; Assunta Biscotti, Maria ; Barucca, Marco ; Baurain, Denis ; Berlin, Aaron M. ; Blatch, Gregory L. ; Buonocore, Francesco ; Burmester, Thorsten ; Campbell, Michael S. ; Canapa, Adriana ; Cannon, John P. ; Christoffels, Alan ; De Moro, Gianluca ; Edkins, Adrienne L. ; Fan, Lin ; Fausto, Anna Maria ; Feiner, Nathalie ; Forconi, Mariko ; Gamieldien, Junaid ; Gnerre, Sante ; Gnirke, Andreas ; Goldstone, Jared V. ; Haerty, Wilfried ; Hahn, Mark E. ; Hesse, Uljana ; Hoffmann, Steve ; Johnson, Jeremy ; Karchner, Sibel I. ; Kuraku, Shigehiro ; Lara, Marcia ; Levin, Joshua Z. ; Litman, Gary W. ; Mauceli, Evan ; Miyake, Tsutomu ; Mueller, M. Gail ; Nelson, David R. ; Nitsche, Anne ; Olmo, Ettore ; Ota, Tatsuya ; Pallavicini, Alberto ; Panji, Sumir ; Picone, Barbara ; Ponting, Chris P. ; Prohaska, Sonja J. ; Przybylski, Dariusz ; Ratan Saha, Nil ; Ravi, Vydianathan ; Ribeiro, Filipe J. ; Sauka-Spengler, Tatjana ; Scapigliati, Giuseppe ; Searle, Stephen M. J. ; Sharpe, Ted ; Simakov, Oleg ; Stadler, Peter F. ; Stegeman, John J. ; Sumiyama, Kenta ; Tabbaa, Diana ; Tafer, Hakim ; Turner-Maier, Jason ; van Heusden, Peter ; White, Simon ; Williams, Louise ; Yandell, Mark ; Brinkmann, Henner ; Volff, Jean-Nicolas ; Tabin, Clifford J. ; Shubin, Neil ; Schartl, Manfred ; Jaffe, David B. ; Postlethwait, John H. ; Venkatesh, Byrappa ; Di Palma, Federica ; Lander, Eric S. ; Meyer, Axel ; Lindblad-Toh, Kerstin
    The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
  • Preprint
    Early life exposure to low levels of AHR agonist PCB126 (3,3’,4,4’,5- pentachlorobiphenyl) reprograms gene expression in adult brain
    ( 2017-09) Aluru, Neelakanteswar ; Karchner, Sibel I. ; Glazer, Lilah
    Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, non-embryotoxic levels of 3,3’,4,4’,5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 nM and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
  • Article
    PCB126 exposure revealed alterations in m6A RNA modifications in transcripts associated with AHR activation
    (Oxford University Press, 2020-10-16) Aluru, Neelakanteswar ; Karchner, Sibel I.
    Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3′ UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3′ UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
  • Article
    Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats
    (BioMed Central, 2014-01-14) Reitzel, Adam M. ; Karchner, Sibel I. ; Franks, Diana G. ; Evans, Brad R. ; Nacci, Diane E. ; Champlin, Denise ; Vieira, Veronica M. ; Hahn, Mark E.
    The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.
  • Article
    The transcriptional response to oxidative stress during vertebrate development : effects of tert-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin
    (Public Library of Science, 2014-11-17) Hahn, Mark E. ; McArthur, Andrew G. ; Karchner, Sibel I. ; Franks, Diana G. ; Jenny, Matthew J. ; Timme-Laragy, Alicia R. ; Stegeman, John J. ; Woodin, Bruce R. ; Cipriano, Michael J. ; Linney, Elwood A.
    Oxidative stress is an important mechanism of chemical toxicity, contributing to teratogenesis and to cardiovascular and neurodegenerative diseases. Developing animals may be especially sensitive to chemicals causing oxidative stress. The developmental expression and inducibility of anti-oxidant defenses through activation of NF-E2-related factor 2 (NRF2) affect susceptibility to oxidants, but the embryonic response to oxidants is not well understood. To assess the response to chemically mediated oxidative stress and how it may vary during development, zebrafish embryos, eleutheroembryos, or larvae at 1, 2, 3, 4, 5, and 6 days post fertilization (dpf) were exposed to DMSO (0.1%), tert-butylhydroquinone (tBHQ; 10 µM) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 2 nM) for 6 hr. Transcript abundance was assessed by real-time qRT-PCR and microarray. qRT-PCR showed strong (4- to 5-fold) induction of gstp1 by tBHQ as early as 1 dpf. tBHQ also induced gclc (2 dpf), but not sod1, nqo1, or cyp1a. TCDD induced cyp1a but none of the other genes. Microarray analysis showed that 1477 probes were significantly different among the DMSO-, tBHQ-, and TCDD-treated eleutheroembryos at 4 dpf. There was substantial overlap between genes induced in developing zebrafish and a set of marker genes induced by oxidative stress in mammals. Genes induced by tBHQ in 4-dpf zebrafish included those involved in glutathione synthesis and utilization, signal transduction, and DNA damage/stress response. The strong induction of hsp70 determined by microarray was confirmed by qRT-PCR and by use of transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) under control of the hsp70 promoter. Genes strongly down-regulated by tBHQ included mitfa, providing a molecular explanation for the loss of pigmentation in tBHQ-exposed embryos. These data show that zebrafish embryos are responsive to oxidative stress as early as 1 dpf, that responsiveness varies with development in a gene-specific manner, and that the oxidative stress response is substantially conserved in vertebrate animals.
  • Preprint
    The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish
    ( 2016-10) Reid, Noah M. ; Proestou, Dina A. ; Clark, Bryan W. ; Warren, Wesley C. ; Colbourne, John K. ; Shaw, Joseph R. ; Karchner, Sibel I. ; Hahn, Mark E. ; Nacci, Diane E. ; Oleksiak, Marjorie F. ; Crawford, Douglas L. ; Whitehead, Andrew
    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor-based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediating genes, and genes of connected signaling pathways, indicating complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish high nucleotide diversity has likely been a crucial substrate for selective sweeps to propel rapid adaptation.