Ware Jonathan D.

No Thumbnail Available
Last Name
Ware
First Name
Jonathan D.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Air-sea CO2 exchange in the equatorial Pacific
    (American Geophysical Union, 2004-08-28) McGillis, Wade R. ; Edson, James B. ; Zappa, Christopher J. ; Ware, Jonathan D. ; McKenna, Sean P. ; Terray, Eugene A. ; Hare, Jeffrey E. ; Fairall, Christopher W. ; Drennan, William M. ; Donelan, Mark A. ; DeGrandpre, Michael D. ; Wanninkhof, Rik ; Feely, Richard A.
    GasEx-2001, a 15-day air-sea carbon dioxide (CO2) exchange study conducted in the equatorial Pacific, used a combination of ships, buoys, and drifters equipped with ocean and atmospheric sensors to assess variability and surface mechanisms controlling air-sea CO2 fluxes. Direct covariance and profile method air-sea CO2 fluxes were measured together with the surface ocean and marine boundary layer processes. The study took place in February 2001 near 125°W, 3°S in a region of high CO2. The diurnal variation in the air-sea CO2 difference was 2.5%, driven predominantly by temperature effects on surface solubility. The wind speed was 6.0 ± 1.3 m s−1, and the atmospheric boundary layer was unstable with conditions over the range −1 < z/L < 0. Diurnal heat fluxes generated daytime surface ocean stratification and subsequent large nighttime buoyancy fluxes. The average CO2 flux from the ocean to the atmosphere was determined to be 3.9 mol m−2 yr−1, with nighttime CO2 fluxes increasing by 40% over daytime values because of a strong nighttime increase in (vertical) convective velocities. The 15 days of air-sea flux measurements taken during GasEx-2001 demonstrate some of the systematic environmental trends of the eastern equatorial Pacific Ocean. The fact that other physical processes, in addition to wind, were observed to control the rate of CO2 transfer from the ocean to the atmosphere indicates that these processes need to be taken into account in local and global biogeochemical models. These local processes can vary on regional and global scales. The GasEx-2001 results show a weak wind dependence but a strong variability in processes governed by the diurnal heating cycle. This implies that any changes in the incident radiation, including atmospheric cloud dynamics, phytoplankton biomass, and surface ocean stratification may have significant feedbacks on the amount and variability of air-sea gas exchange. This is in sharp contrast with previous field studies of air-sea gas exchange, which showed that wind was the dominating forcing function. The results suggest that gas transfer parameterizations that rely solely on wind will be insufficient for regions with low to intermediate winds and strong insolation.
  • Article
    A surface mooring for air–sea interaction research in the Gulf Stream. Part I : mooring design and instrumentation
    (American Meteorological Society, 2012-09) Weller, Robert A. ; Bigorre, Sebastien P. ; Lord, Jeffrey ; Ware, Jonathan D. ; Edson, James B.
    The design of a surface mooring for deployment in the Gulf Stream in the Mid-Atlantic Bight is described. The authors' goals were to observe the surface meteorology; upper-ocean variability; and air–sea exchanges of heat, freshwater, and momentum in and near the Gulf Stream during two successive 1-yr deployments. Of particular interest was quantifying these air–sea fluxes during wintertime events that carry cold, dry air from the land over the Gulf Stream. Historical current data and information about the surface waves were used to guide the design of the surface mooring. The surface buoy provided the platform for both bulk meteorological sensors and a direct covariance flux system. Redundancy in the meteorological sensors proved to be a largely successful strategy to obtain complete time series. Oceanographic instrumentation was limited in size by considerations of drag; and two current meters, three temperature–salinity recorders, and 15 temperature recorders were deployed. Deployment from a single-screw vessel in the Gulf Stream required a controlled-drift stern first over the anchor sites. The first deployment lasted the planned full year. The second deployment ended after 3 months when the mooring was cut by unknown means at a depth of about 3000 m. The mooring was at times in the core of the Gulf Stream, and a peak surface current of over 2.7 m s−1 was observed. The 15-month records of surface meteorology and air–sea fluxes captured the seasonal variability as well as several cold-air outbreaks; the peak observed heat loss was in excess of 1400 W m−2.
  • Article
    A surface mooring for air–sea interaction research in the Gulf Stream. Part II : analysis of the observations and their accuracies
    (American Meteorological Society, 2013-03) Bigorre, Sebastien P. ; Weller, Robert A. ; Edson, James B. ; Ware, Jonathan D.
    A surface mooring was deployed in the Gulf Stream for 15 months to investigate the role of air–sea interaction in mode water formation and other processes. The accuracies of the near-surface meteorological and oceanographic measurements are investigated. In addition, the impacts of these measurement errors on the estimation and study of the air–sea fluxes in the Gulf Stream are discussed. Pre- and postdeployment calibrations together with in situ comparison between shipboard and moored sensors supported the identification of biases due to sensor drifts, sensor electronics, and calibration errors. A postdeployment field study was used to further investigate the performance of the wind sensors. The use of redundant sensor sets not only supported the filling of data gaps but also allowed an examination of the contribution of random errors. Air–sea fluxes were also analyzed and computed from both Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parameterization and using direct covariance measurements. The basic conclusion is that the surface buoy deployed in the Gulf Stream to support air–sea interaction research was successful, providing an improved 15-month record of surface meteorology, upper-ocean variability, and air–sea fluxes with known accuracies. At the same time, the coincident deployment of mean meteorological and turbulent flux sensors proved to be a successful strategy to certify the validity of the bulk formula fluxes over the midrange of wind speeds and to support further work to address the present shortcomings of the bulk formula methods at the low and high wind speeds.
  • Technical Report
    Pan American Climate Study (PACS) mooring deployment cruise report : R/V Roger Revelle cruise number Genesis 4, 9 April-5 May 1997
    (Woods Hole Oceanographic Institution, 1998-04) Way, Bryan S. ; Ostrom, William M. ; Weller, Robert A. ; Ware, Jonathan D. ; Trask, Richard P. ; Cole, Rick ; Donovan, Jeff
    Three surface moorings were deployed in the eastern equatorial Pacifc from the R/V Roger Revelle as part of the Pan American Climate Study (PACS). PACS is a NOAA-funded study with the goal of investigating links between sea surface temperature varabilty in the tropical oceans near the Americas and climate over the American continents. The three moorings were deployed near 125°W, spanning the strong meridional sea surface temperature gradient associated with the cold tongue south of the equator and the warmer ocean north of the equator, near the northernmost, summer location of the Intertropical Convergence Zone. The mooring deployment was done to improve understading of the air-sea fluxes and of the processes that control the evolution of the sea surface temperature field in the region. Two surface moorings of the Upper Ocean Processes Group at the Woods Hole Oceanographic Institution (WHOI) were deployed-one at 3°S, 125°W and the other at lO°N, 125°W. One mooring from the Ocean Circulation Group (R. Weisberg) at the University of South Florida (USP) was deployed on the equator at 128°W. The buoys of the two WHOI moorings were each equipped with meteorological instrmentation, including a Vector Averaging Wind Recorder, and an Improved Meteorological (IMET) system. The WHOI moorings also carried Vector Measurng Current Meters, single-point temperature recorders, and conductivity and temperature recorders located in the upper 200 meters of the mooring line. In addition to the instrumentation noted above, a variety of other instruments, including an acoustic current meter, acoustic doppler current meters, bio-optical instrument packages and an acoustic rain gauge, were deployed during the PACS field program. The USF mooring had an IMET system on the surface buoy and for oceanographic instrumentation, two RD Instruments acoustic doppler current profilers, single-point temperature recorders, and conductivity and temperature recorders. Conductivity-temperature-depth (CTD) profiles were made at each mooring site and during the transit between mooring locations. This report describes, in a general manner, the work that took place durig the Genesis 4 cruise aboard the R/V Roger Revelle. The three surface moorings deployed during this cruise will be recovered and re-deployed after approximately nine months, with a final recovery planned for 17 months after the first setting. Details of the mooring designs and preliminary data from the CT profies are included.
  • Technical Report
    Arabian Sea mixed layer dynamics experiment mooring recovery cruise report : R/V Thomas Thompson Cruise Number 52, 14 October-25 October 1995
    (Woods Hole Oceanographic Institution, 1996-09) Ostrom, William M. ; Way, Bryan S. ; Weller, Robert A. ; Ware, Jonathan D. ; Trask, Richard P.
    An array of surface and subsurface moorings was deployed in the Arabian Sea to provide high quality time series of local forcing and upper ocean currents, temperature, and conductivity in order to investigate the dynamics of the ocean's response to the monsoonal forcing characteristic of the area. The moored array was first deployed during R/V Thomas Thompson cruise number 40; recovered and redeployed during R/V Thomas Thompson cruise number 46 and recovered to conclude the deployment during R/V Thomas Thompson cruise number 52. The array was part of the Office of Naval Research (ONR) funded Arabian Sea experiment. This report describes, in a general manner, the work that took place during the R/V Thomas Thompson cruise number 52. A detailed description of the Woods Hole Oceanographic Institution (WHOI) surface mooring and its instrumentation is provided. Information about the XBT and CTD data and near surface temperature data collected during the cruise is also included.