Eguíluz
Víctor M.
Eguíluz
Víctor M.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleA standardisation framework for bio-logging data to advance ecological research and conservation(Wiley, 2021-03-15) Sequeira, Ana M. M. ; O'Toole, Malcolm ; Keates, Theresa R. ; McDonnell, Laura H. ; Braun, Camrin D. ; Hoenner, Xavier ; Jaine, Fabrice R. A. ; Jonsen, Ian ; Newman, Peggy ; Pye, Jonathan ; Bograd, Steven ; Hays, Graeme ; Hazen, Elliott L. ; Holland, Melinda ; Tsontos, Vardis ; Blight, Clint ; Cagnacci, Francesca ; Davidson, Sarah C. ; Dettki, Holger ; Duarte, Carlos M. ; Dunn, Daniel C. ; Eguíluz, Víctor M. ; Fedak, Michael ; Gleiss, Adrian C. ; Hammerschlag, Neil ; Hindell, Mark ; Holland, Kim ; Janekovic, Ivica ; McKinzie, Megan K. ; Muelbert, Monica M. C. ; Pattiaratchi, Charitha ; Rutz, Christian ; Sims, David W. ; Simmons, Samantha E. ; Townsend, Brendal ; Whoriskey, Frederick G. ; Woodward, Bill ; Costa, Daniel P. ; Heupel, Michelle R. ; McMahon, Clive R. ; Harcourt, Robert ; Weise, Michael1. Bio-logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio-logging data into research and management recommendations. 2. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. 3. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. 4. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio-logging data formats across all fields in animal ecology.
-
PreprintConvergence of marine megafauna movement patterns in coastal and open oceans( 2017-09) Sequeira, Ana M. M. ; Rodríguez, Jorge P. ; Eguíluz, Víctor M. ; Harcourt, Robert ; Hindell, Mark ; Sims, David W. ; Duarte, Carlos M. ; Costa, Daniel P. ; Fernández-Gracia, Juan ; Ferreira, Luciana C. ; Hays, Graeme ; Heupel, Michelle R. ; Meekan, Mark G. ; Aven, Allen ; Bailleul, Frédéric ; Baylis, Alastair M. M. ; Berumen, Michael L. ; Braun, Camrin D. ; Burns, Jennifer ; Caley, M. Julian ; Campbell, R. ; Carmichael, Ruth H. ; Clua, Eric ; Einoder, Luke D. ; Friedlaender, Ari S. ; Goebel, Michael E. ; Goldsworthy, Simon D. ; Guinet, Christophe ; Gunn, John ; Hamer, D. ; Hammerschlag, Neil ; Hammill, Mike O. ; Hückstädt, Luis A. ; Humphries, Nicolas E. ; Lea, Mary-Anne ; Lowther, Andrew D. ; Mackay, Alice ; McHuron, Elizabeth ; McKenzie, J. ; McLeay, Lachlan ; McMahon, Cathy R. ; Mengersen, Kerrie ; Muelbert, Monica M. C. ; Pagano, Anthony M. ; Page, B. ; Queiroz, N. ; Robinson, Patrick W. ; Shaffer, Scott A. ; Shivji, Mahmood ; Skomal, Gregory B. ; Thorrold, Simon R. ; Villegas-Amtmann, Stella ; Weise, Michael ; Wells, Randall S. ; Wetherbee, Bradley M. ; Wiebkin, A. ; Wienecke, Barbara ; Thums, MicheleThe extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.