He Yujie

No Thumbnail Available
Last Name
He
First Name
Yujie
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004
    (IOP Science, 2015-09-10) Zhuang, Qianlai ; Zhu, Xudong ; He, Yujie ; Prigent, Catherine ; Melillo, Jerry M. ; McGuire, A. David ; Prinn, Ronald G. ; Kicklighter, David W.
    Estimates of the seasonal and interannual exchanges of carbon dioxide (CO2) and methane (CH4) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH4 yr−1, which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH4 yr−1). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO2 sink of −1.28 ± 0.03 Pg C yr−1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr−1 and a upland sink from −0.82 to −0.98 Pg C yr−1. Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH4 emissions, but lower summer CO2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further indicates that wetlands play a disproportionally important role in affecting regional greenhouse gas budgets given that they only occupy approximately 10% of the total land area in the region.
  • Article
    Evapotranspiration in Northern Eurasia : impact of forcing uncertainties on terrestrial ecosystem model estimates
    (John Wiley & Sons, 2015-04-03) Liu, Yaling ; Zhuang, Qianlai ; Miralles, Diego ; Pan, Zhihua ; Kicklighter, David W. ; Zhu, Qing ; He, Yujie ; Chen, Jiquan ; Tchebakova, Nadja M. ; Sirin, Andrey ; Niyogi, Dev ; Melillo, Jerry M.
    The ecosystems in Northern Eurasia (NE) play an important role in the global water cycle and the climate system. While evapotranspiration (ET) is a critical variable to understand this role, ET over this region remains largely unstudied. Using an improved version of the Terrestrial Ecosystem Model with five widely used forcing data sets, we examine the impact that uncertainties in climate forcing data have on the magnitude, variability, and dominant climatic drivers of ET for the period 1979–2008. Estimates of regional average ET vary in the range of 241.4–335.7 mm yr−1 depending on the choice of forcing data. This range corresponds to as much as 32% of the mean ET. Meanwhile, the spatial patterns of long-term average ET across NE are generally consistent for all forcing data sets. Our ET estimates in NE are largely affected by uncertainties in precipitation (P), air temperature (T), incoming shortwave radiation (R), and vapor pressure deficit (VPD). During the growing season, the correlations between ET and each forcing variable indicate that T is the dominant factor in the north and P in the south. Unsurprisingly, the uncertainties in climate forcing data propagate as well to estimates of the volume of water available for runoff (here defined as P-ET). While the Climate Research Unit data set is overall the best choice of forcing data in NE according to our assessment, the quality of these forcing data sets remains a major challenge to accurately quantify the regional water balance in NE.