Noble
Abigail E.
Noble
Abigail E.
No Thumbnail Available
14 results
Search Results
Now showing
1 - 14 of 14
-
ArticleDissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice : basal sea ice communities as a capacitor for iron(Frontiers Media, 2013-10-30) Noble, Abigail E. ; Moran, Dawn M. ; Allen, Andrew E. ; Saito, Mak A.Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.
-
PreprintCobalt, manganese, and iron near the Hawaiian Islands : a potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals( 2007-09-26) Noble, Abigail E. ; Saito, Mak A. ; Maiti, Kanchan ; Benitez-Nelson, Claudia R.The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-core cyclonic eddies that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt (n =147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale coldcore eddy, Cyclone Opal, revealed small distinct maxima in cobalt at ~100m depth and a larger inventory of cobalt within the eddy. We hypothesize that this was due to a cobalt concentrating effect within the eddy, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization (Benitez-Nelson et al. 2007). There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (~0.5nM) in surface waters relative to the iron depleted waters of the surrounding Pacific (Fitzwater et al. 1996), possibly due to island effects associated with the iron-rich volcanic soil from the Hawaiian Islands and/or anthropogenic inputs. Distinct depth maxima in total dissolved cobalt were observed at 400 to 600m depth, suggestive of the release of metals from the shelf area of comparable depth that surrounds these islands.
-
ArticleCoastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03(Copernicus Publications on behalf of the European Geosciences Union, 2017-06-02) Noble, Abigail E. ; Ohnemus, Daniel C. ; Hawco, Nicholas J. ; Lam, Phoebe J. ; Saito, Mak A.Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.
-
ArticleBasin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean(Association for the Sciences of Limnology and Oceanography, 2012-07) Noble, Abigail E. ; Lamborg, Carl H. ; Ohnemus, Daniel C. ; Lam, Phoebe J. ; Goepfert, Tyler J. ; Measures, Christopher I. ; Frame, Caitlin H. ; Casciotti, Karen L. ; DiTullio, Giacomo R. ; Jennings, Joe C. ; Saito, Mak A.We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.
-
ArticleA seasonal study of dissolved cobalt in the Ross Sea, Antarctica : micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P(Copernicus Publications on behalf of the European Geosciences Union, 2010-12-22) Saito, Mak A. ; Goepfert, Tyler J. ; Noble, Abigail E. ; Bertrand, Erin M. ; Sedwick, Peter N. ; DiTullio, Giacomo R.We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005–2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO43−), with dCo and PO43− showing a significant correlation throughout the water column (r2 = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from ~45–85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (~30 pM dCo), with concentrations as low as 20 pM observed in some regions where PO43− was depleted to ~0.1 μM. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 μmol Co:mol−1 PO43− calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co:PO43−/Zn:PO43− ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co:PO43− relationship was in contrast to Zn:PO43− and Cd:PO43− kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd:PO43− kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy.
-
ArticleThe acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean(Copernicus Publications on behalf of the European Geosciences Union, 2017-10-20) Saito, Mak A. ; Noble, Abigail E. ; Hawco, Nicholas J. ; Twining, Benjamin S. ; Ohnemus, Daniel C. ; John, Seth G. ; Lam, Phoebe J. ; Conway, Tim M. ; Johnson, Rod ; Moran, Dawn M. ; McIlvin, Matthew R.The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become ∼ 10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of ∼ 400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone.
-
ArticleThe Angola Gyre is a hotspot of dinitrogen fixation in the South Atlantic Ocean(Nature Research, 2022-06-30) Marshall, Tanya ; Granger, Julie ; Casciotti, Karen L. ; Dähnke, Kirstin ; Emeis, Kay-Christian ; Marconi, Dario ; McIlvin, Matthew R. ; Noble, Abigail E. ; Saito, Mak A. ; Sigman, Daniel M. ; Fawcett, Sarah E.Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.
-
ArticleElevated sources of cobalt in the Arctic Ocean(European Geosciences Union, 2020-10-01) Bundy, Randelle M. ; Tagliabue, Alessandro ; Hawco, Nicholas J. ; Morton, Peter L. ; Twining, Benjamin S. ; Hatta, Mariko ; Noble, Abigail E. ; Cape, Mattias R. ; John, Seth G. ; Cullen, Jay T. ; Saito, Mak A.Cobalt (Co) is an important bioactive trace metal that is the metal cofactor in cobalamin (vitamin B12) which can limit or co-limit phytoplankton growth in many regions of the ocean. Total dissolved and labile Co measurements in the Canadian sector of the Arctic Ocean during the U.S. GEOTRACES Arctic expedition (GN01) and the Canadian International Polar Year GEOTRACES expedition (GIPY14) revealed a dynamic biogeochemical cycle for Co in this basin. The major sources of Co in the Arctic were from shelf regions and rivers, with only minimal contributions from other freshwater sources (sea ice, snow) and eolian deposition. The most striking feature was the extremely high concentrations of dissolved Co in the upper 100 m, with concentrations routinely exceeding 800 pmol L−1 over the shelf regions. This plume of high Co persisted throughout the Arctic basin and extended to the North Pole, where sources of Co shifted from primarily shelf-derived to riverine, as freshwater from Arctic rivers was entrained in the Transpolar Drift. Dissolved Co was also strongly organically complexed in the Arctic, ranging from 70 % to 100 % complexed in the surface and deep ocean, respectively. Deep-water concentrations of dissolved Co were remarkably consistent throughout the basin (∼55 pmol L−1), with concentrations reflecting those of deep Atlantic water and deep-ocean scavenging of dissolved Co. A biogeochemical model of Co cycling was used to support the hypothesis that the majority of the high surface Co in the Arctic was emanating from the shelf. The model showed that the high concentrations of Co observed were due to the large shelf area of the Arctic, as well as to dampened scavenging of Co by manganese-oxidizing (Mn-oxidizing) bacteria due to the lower temperatures. The majority of this scavenging appears to have occurred in the upper 200 m, with minimal additional scavenging below this depth. Evidence suggests that both dissolved Co (dCo) and labile Co (LCo) are increasing over time on the Arctic shelf, and these limited temporal results are consistent with other tracers in the Arctic. These elevated surface concentrations of Co likely lead to a net flux of Co out of the Arctic, with implications for downstream biological uptake of Co in the North Atlantic and elevated Co in North Atlantic Deep Water. Understanding the current distributions of Co in the Arctic will be important for constraining changes to Co inputs resulting from regional intensification of freshwater fluxes from ice and permafrost melt in response to ongoing climate change.
-
ArticleThe GEOTRACES Intermediate Data Product 2014(Elsevier, 2015-04-16) Mawji, Edward ; Schlitzer, Reiner ; Dodas, Elena Masferrer ; Abadie, Cyril ; Abouchami, Wafa ; Anderson, Robert F. ; Baars, Oliver ; Bakker, Karel ; Baskaran, Mark ; Bates, Nicholas R. ; Bluhm, Katrin ; Bowie, Andrew R. ; Bown, Johann ; Boye, Marie ; Marie, Edward A. ; Branellec, Pierre ; Bruland, Kenneth W. ; Brzezinski, Mark A. ; Bucciarelli, Eva ; Buesseler, Ken O. ; Butler, Edward ; Cai, Pinghe ; Cardinal, Damien ; Casciotti, Karen L. ; Chaves, Joaquin E. ; Cheng, Hai ; Chever, Fanny ; Church, Thomas M. ; Colman, Albert S. ; Conway, Tim M. ; Croot, Peter L. ; Cutter, Gregory A. ; Baar, Hein J. W. de ; de Souza, Gregory F. ; Dehairs, Frank ; Deng, Feifei ; Dieu, Huong Thi ; Dulaquais, Gabriel ; Echegoyen-Sanz, Yolanda ; Edwards, R. Lawrence ; Fahrbach, Eberhard ; Fitzsimmons, Jessica N. ; Fleisher, Martin Q. ; Frank, Martin ; Friedrich, Jana ; Fripiat, Francois ; Galer, Stephen J. G. ; Gamo, Toshitaka ; Garcia Solsona, Ester ; Gerringa, Loes J. A. ; Godoy, Jose Marcus ; Gonzalez, Santiago ; Grossteffan, Emilie ; Hatta, Mariko ; Hayes, Christopher T. ; Heller, Maija Iris ; Henderson, Gideon M. ; Huang, Kuo-Fang ; Jeandel, Catherine ; Jenkins, William J. ; John, Seth G. ; Kenna, Timothy C. ; Klunder, Maarten ; Kretschmer, Sven ; Kumamoto, Yuichiro ; Laan, Patrick ; Labatut, Marie ; Lacan, Francois ; Lam, Phoebe J. ; Lannuzel, Delphine ; le Moigne, Frederique ; Lechtenfeld, Oliver J. ; Lohan, Maeve C. ; Lu, Yanbin ; Masqué, Pere ; McClain, Charles R. ; Measures, Christopher I. ; Middag, Rob ; Moffett, James W. ; Navidad, Alicia ; Nishioka, Jun ; Noble, Abigail E. ; Obata, Hajime ; Ohnemus, Daniel C. ; Owens, Stephanie A. ; Planchon, Frederic ; Pradoux, Catherine ; Puigcorbe, Viena ; Quay, Paul D. ; Radic, Amandine ; Rehkamper, Mark ; Remenyi, Tomas A. ; Rijkenberg, Micha J. A. ; Rintoul, Stephen R. ; Robinson, Laura F. ; Roeske, Tobias ; Rosenberg, Mark ; Rutgers van der Loeff, Michiel M. ; Ryabenko, Evgenia ; Saito, Mak A. ; Roshan, Saeed ; Salt, Lesley ; Sarthou, Geraldine ; Schauer, Ursula ; Scott, Peter M. ; Sedwick, Peter N. ; Sha, Lijuan ; Shiller, Alan M. ; Sigman, Daniel M. ; Smethie, William M. ; Smith, Geoffrey J. ; Sohrin, Yoshiki ; Speich, Sabrina ; Stichel, Torben ; Stutsman, Johnny ; Swift, James H. ; Tagliabue, Alessandro ; Thomas, Alexander L. ; Tsunogai, Urumu ; Twining, Benjamin S. ; van Aken, Hendrik M. ; van Heuven, Steven ; van Ooijen, Jan ; van Weerlee, Evaline ; Venchiarutti, Celia ; Voelker, Antje H. L. ; Wake, Bronwyn ; Warner, Mark J. ; Woodward, E. Malcolm S. ; Wu, Jingfeng ; Wyatt, Neil ; Yoshikawa, Hisayuki ; Zheng, Xin-Yuan ; Xue, Zichen ; Zieringer, Moritz ; Zimmer, Louise A.The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
-
ArticleHydrothermal exploration of the southern Chile Rise: sediment‐hosted venting at the Chile Triple Junction(American Geophysical Union, 2022-03-04) German, Christopher R. ; Baumberger, Tamara ; Lilley, Marvin D. ; Lupton, John E. ; Noble, Abigail E. ; Saito, Mak A. ; Thurber, Andrew R. ; Blackman, Donna K.We report results from a hydrothermal plume survey along the southernmost Chile Rise from the Guamblin Fracture Zone to the Chile Triple Junction (CTJ) encompassing two segments (93 km cumulative length) of intermediate spreading-rate mid-ocean ridge axis. Our approach used in situ water column sensing (CTD, optical clarity, redox disequilibrium) coupled with sampling for shipboard and shore based geochemical analyses (δ3He, CH4, total dissolvable iron (TDFe) and manganese, (TDMn)) to explore for evidence of seafloor hydrothermal venting. Across the entire survey, the only location at which evidence for submarine venting was detected was at the southernmost limit to the survey. There, the source of a dispersing hydrothermal plume was located at 46°16.5’S, 75°47.9’W, coincident with the CTJ itself. The plume exhibits anomalies in both δ3He and dissolved CH4 but no enrichments in TDFe or TDMn beyond what can be attributed to resuspension of sediments covering the seafloor where the ridge intersects the Chile margin. These results are indicative of sediment-hosted venting at the CTJ.
-
ArticleNitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System(American Geophysical Union, 2011-08-27) Sohm, Jill A. ; Hilton, Jason A. ; Noble, Abigail E. ; Zehr, Jonathan P. ; Saito, Mak A. ; Webb, Eric A.Dinitrogen (N2) fixation is recognized as an important input of new nitrogen (N) to the open ocean gyres, contributing to the export of organic matter from surface waters. However, very little N2-fixation research has focused on the South Atlantic Gyre, where dust deposition of iron (Fe), an important micronutrient for diazotrophs, is seasonally low. Recent modeling efforts suggest that N2-fixation may in fact be closely coupled to, and greatest in, areas of denitrification, as opposed to the oceanic gyres. One of these areas, the Benguela Upwelling System, lies to the east of the South Atlantic Gyre. In this study we show that N2-fixation in surface waters across the South Atlantic Gyre was low overall (<1.5 nmol N l−1 d−1) with highest rates seen in or near the Benguela Upwelling System (up to ∼8 nmol N l−1 d−1). Surface water dissolved Fe (dFe) concentrations were very low in the gyre (∼0.3 nM or lower), while soluble reactive phosphorus (SRP) concentrations were relatively high (∼0.15 μM). N2-fixation rates across the entire sampling area were significantly positively correlated to dFe, but also to SRP and NO3−. Thus, high NO3− concentrations did not exclude N2-fixation in the upwelling region, which provides evidence that N2-fixation may be occurring in previously unrecognized waters, specifically near denitrification zones. However the gene encoding for a nitrogenase component (nifH) was not detected from known diazotrophs at some stations in or near the upwelling where N2-fixation was greatest, suggesting the presence of unknown diazotrophs in these waters.
-
ArticleHydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean(European Geosciences Union, 2021-10-06) Cohen, Natalie R. ; Noble, Abigail E. ; Moran, Dawn M. ; McIlvin, Matthew R. ; Goepfert, Tyler J. ; Hawco, Nicholas J. ; German, Christopher R. ; Horner, Tristan J. ; Lamborg, Carl H. ; McCrow, John P. ; Allen, Andrew E. ; Saito, Mak A.Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low-iron waters, such as in the southwest Pacific Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the northeastern (NE) Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1500–2000 m depth (Lupton et al., 2004). Studies investigating the long-range transport of trace metals associated with such dispersing plumes are rare, and the biogeochemical impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE Lau Basin and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense signal was detected near the Mangatolo Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close proximity to the previously reported 3He signature. Protein content in distal-plume-influenced seawater, which was high in metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, protein degradation, and chemoautotrophy were abundant compared to deep waters outside of the distal plume. Our results demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest Pacific Ocean and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep-sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.
-
ThesisInfluences on the oceanic biogeochemical cycling of the hybrid-type metals : cobalt, iron, and manganese(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2012-02) Noble, Abigail E.Trace metal cycling is one of many processes that influence ocean ecosystem dynamics. Cobalt, iron, and manganese are redox active trace metal micronutrients with oceanic distributions that are influenced by both biological and abiotic sources and sinks. Their open ocean concentrations range from picomolar to nanomolar, and their bioavailabilities can impact primary production. Understanding the biogeochemical cycling of these hybrid-type metals with an emphasis on cobalt was the focus of this thesis. This was accomplished by determining the dissolved distributions of these metals in oceanic regions that were characterized by different dominant biogeochemistries. A large subsurface plume of dissolved cobalt, iron, and manganese was found in the Eastern South Atlantic. The cause of this plume is a combination of reductive dissolution in coastal sediments, wind-driven upwelling, advection, biological uptake, and remineralization. Additional processes that are discussed as sources of metals to the regions studied during this thesis include isopycnal uplift within cold-core eddies (Hawaii), ice melt (McMurdo Sound, Antarctica), riverine input (Arctic Ocean), and winter mixing (McMurdo Sound). The biological influence on surface ocean distributions of cobalt was apparent by the observation of linear relationships between cobalt and phosphate in mid to low latitudes. The cobalt:phosphate ratios derived from these correlations changed over orders of magnitude, revealing dynamic variability in the utilization, demand, and sources of this micronutrient. Speciation studies suggest that there may be two classes of cobalt binding ligands, and that organic complexation plays an important role in preventing scavenging of cobalt in the ocean. These datasets provided a basis for comparing the biogeochemical cycles of cobalt, iron, and manganese in three oceanic regimes (Hawaii, South Atlantic, McMurdo Sound). The relative rates of scavenging for these metals show environmental variability: in the South Atlantic, cobalt, iron, and manganese were scavenged at very different rates, but in the Ross Sea, mixing and circulation over the shallow sea was fast, scavenging played a minor role, and the cycles of all three metals were coupled. Studying the distributions of these metals in biogeochemically distinct regions is a step toward a better understanding of their oceanic cycles.
-
ArticleThe GEOTRACES Intermediate Data Product 2017(Elsevier, 2018-06-01) Schlitzer, Reiner ; Anderson, Robert F. ; Dodas, Elena Masferrer ; Lohan, Maeve C. ; Geibert, Walter ; Tagliabue, Alessandro ; Bowie, Andrew R. ; Jeandel, Catherine ; Maldonado, Maria T. ; Landing, William M. ; Cockwell, Donna ; Abadie, Cyril ; Abouchami, Wafa ; Achterberg, Eric P. ; Agather, Alison ; Aguliar-Islas, Ana ; van Aken, Hendrik M. ; Andersen, Morten ; Archer, Corey ; Auro, Maureen E. ; Baar, Hein J. W. de ; Baars, Oliver ; Baker, Alex R. ; Bakker, Karel ; Basak, Chandranath ; Baskaran, Mark ; Bates, Nicholas R. ; Bauch, Dorothea ; van Beek, Pieter ; Behrens, Melanie K. ; Black, Erin E. ; Bluhm, Katrin ; Bopp, Laurent ; Bouman, Heather ; Bowman, Katlin ; Bown, Johann ; Boyd, Philip ; Boye, Marie ; Boyle, Edward A. ; Branellec, Pierre ; Bridgestock, Luke ; Brissebrat, Guillaume ; Browning, Thomas A. ; Bruland, Kenneth W. ; Brumsack, Hans-Jürgen ; Brzezinski, Mark A. ; Buck, Clifton S. ; Buck, Kristen N. ; Buesseler, Ken O. ; Bull, Abby ; Butler, Edward ; Cai, Pinghe ; Cámara Mor, Patricia ; Cardinal, Damien ; Carlson, Craig ; Carrasco, Gonzalo ; Casacuberta, Nuria ; Casciotti, Karen L. ; Castrillejo, Maxi ; Chamizo, Elena ; Chance, Rosie ; Charette, Matthew A. ; Chaves, Joaquin E. ; Cheng, Hai ; Chever, Fanny ; Christl, Marcus ; Church, Thomas M. ; Closset, Ivia ; Colman, Albert S. ; Conway, Tim M. ; Cossa, Daniel ; Croot, Peter L. ; Cullen, Jay T. ; Cutter, Gregory A. ; Daniels, Chris ; Dehairs, Frank ; Deng, Feifei ; Dieu, Huong Thi ; Duggan, Brian ; Dulaquais, Gabriel ; Dumousseaud, Cynthia ; Echegoyen-Sanz, Yolanda ; Edwards, R. Lawrence ; Ellwood, Michael J. ; Fahrbach, Eberhard ; Fitzsimmons, Jessica N. ; Flegal, A. Russell ; Fleisher, Martin Q. ; van de Flierdt, Tina ; Frank, Martin ; Friedrich, Jana ; Fripiat, Francois ; Fröllje, Henning ; Galer, Stephen J. G. ; Gamo, Toshitaka ; Ganeshram, Raja S. ; Garcia-Orellana, Jordi ; Garcia Solsona, Ester ; Gault-Ringold, Melanie ; George, Ejin ; Gerringa, Loes J. A. ; Gilbert, Melissa ; Godoy, Jose Marcus ; Goldstein, Steven L. ; Gonzalez, Santiago ; Grissom, Karen ; Hammerschmidt, Chad R. ; Hartman, Alison ; Hassler, Christel ; Hathorne, Ed C. ; Hatta, Mariko ; Hawco, Nicholas J. ; Hayes, Christopher T. ; Heimbürger, Lars-Eric ; Helgoe, Josh ; Heller, Maija Iris ; Henderson, Gideon M. ; Henderson, Paul B. ; van Heuven, Steven ; Ho, Peng ; Horner, Tristan J. ; Hsieh, Yu-Te ; Huang, Kuo-Fang ; Humphreys, Matthew P. ; Isshiki, Kenji ; Jacquot, Jeremy E. ; Janssen, David J. ; Jenkins, William J. ; John, Seth ; Jones, Elizabeth M. ; Jones, Janice L. ; Kadko, David ; Kayser, Rick ; Kenna, Timothy C. ; Khondoker, Roulin ; Kim, Taejin ; Kipp, Lauren ; Klar, Jessica K. ; Klunder, Maarten ; Kretschmer, Sven ; Kumamoto, Yuichiro ; Laan, Patrick ; Labatut, Marie ; Lacan, Francois ; Lam, Phoebe J. ; Lambelet, Myriam ; Lamborg, Carl H. ; le Moigne, Frederique ; Le Roy, Emilie ; Lechtenfeld, Oliver J. ; Lee, Jong-Mi ; Lherminier, Pascale ; Little, Susan ; López-Lora, Mercedes ; Lu, Yanbin ; Masque, Pere ; Mawji, Edward ; McClain, Charles R. ; Measures, Christopher I. ; Mehic, Sanjin ; Menzel Barraqueta, Jan-Lukas ; Merwe, Pier van der ; Middag, Rob ; Mieruch, Sebastian ; Milne, Angela ; Minami, Tomoharu ; Moffett, James W. ; Moncoiffe, Gwenaelle ; Moore, Willard S. ; Morris, Paul J. ; Morton, Peter L. ; Nakaguchi, Yuzuru ; Nakayama, Noriko ; Niedermiller, John ; Nishioka, Jun ; Nishiuchi, Akira ; Noble, Abigail E. ; Obata, Hajime ; Ober, Sven ; Ohnemus, Daniel C. ; van Ooijen, Jan ; O'Sullivan, Jeanette ; Owens, Stephanie A. ; Pahnke, Katharina ; Paul, Maxence ; Pavia, Frank ; Pena, Leopoldo D. ; Peters, Brian ; Planchon, Frederic ; Planquette, Helene ; Pradoux, Catherine ; Puigcorbé, Viena ; Quay, Paul D. ; Queroue, Fabien ; Radic, Amandine ; Rauschenberg, Sara ; Rehkämper, Mark ; Rember, Robert ; Remenyi, Tomas A. ; Resing, Joseph A. ; Rickli, Joerg ; Rigaud, Sylvain ; Rijkenberg, Micha J. A. ; Rintoul, Stephen R. ; Robinson, Laura F. ; Roca-Martí, Montserrat ; Rodellas, Valenti ; Roeske, Tobias ; Rolison, John M. ; Rosenberg, Mark ; Roshan, Saeed ; Rutgers van der Loeff, Michiel M. ; Ryabenko, Evgenia ; Saito, Mak A. ; Salt, Lesley ; Sanial, Virginie ; Sarthou, Geraldine ; Schallenberg, Christina ; Schauer, Ursula ; Scher, Howie ; Schlosser, Christian ; Schnetger, Bernhard ; Scott, Peter M. ; Sedwick, Peter N. ; Semiletov, Igor P. ; Shelley, Rachel U. ; Sherrell, Robert M. ; Shiller, Alan M. ; Sigman, Daniel M. ; Singh, Sunil Kumar ; Slagter, Hans ; Slater, Emma ; Smethie, William M. ; Snaith, Helen ; Sohrin, Yoshiki ; Sohst, Bettina M. ; Sonke, Jeroen E. ; Speich, Sabrina ; Steinfeldt, Reiner ; Stewart, Gillian ; Stichel, Torben ; Stirling, Claudine H. ; Stutsman, Johnny ; Swarr, Gretchen J. ; Swift, James H. ; Thomas, Alexander ; Thorne, Kay ; Till, Claire P. ; Till, Ralph ; Townsend, Ashley T. ; Townsend, Emily ; Tuerena, Robyn ; Twining, Benjamin S. ; Vance, Derek ; Velazquez, Sue ; Venchiarutti, Celia ; Villa-Alfageme, Maria ; Vivancos, Sebastian M. ; Voelker, Antje H. L. ; Wake, Bronwyn ; Warner, Mark J. ; Watson, Ros ; van Weerlee, Evaline ; Weigand, M. Alexandra ; Weinstein, Yishai ; Weiss, Dominik ; Wisotzki, Andreas ; Woodward, E. Malcolm S. ; Wu, Jingfeng ; Wu, Yingzhe ; Wuttig, Kathrin ; Wyatt, Neil ; Xiang, Yang ; Xie, Ruifang C. ; Xue, Zichen ; Yoshikawa, Hisayuki ; Zhang, Jing ; Zhang, Pu ; Zhao, Ye ; Zheng, Linjie ; Zheng, Xin-Yuan ; Zieringer, Moritz ; Zimmer, Louise A. ; Ziveri, Patrizia ; Zunino, Patricia ; Zurbrick, CherylThe GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.