Kirkham Amy L.

No Thumbnail Available
Last Name
Kirkham
First Name
Amy L.
ORCID
0000-0002-8930-6748

Search Results

Now showing 1 - 3 of 3
  • Article
    Iron mobilization during lactation reduces oxygen stores in a diving mammal
    (Nature Research, 2022-08-02) Shero, Michelle R. ; Kirkham, Amy L. ; Costa, Daniel P. ; Burns, Jennifer M.
    The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. This study shows that in addition to calories, high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. Numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation) were significantly elevated during lactation in adult female Weddell seals (Leptonychotes weddellii), but not in skip-breeders. Iron was mobilized from endogenous stores for incorporation into the Weddell seal’s milk at concentrations up to 100× higher than terrestrial mammals. Such high rates of iron offload to offspring drew from the female’s own heme stores and led to compromised physiologic dive capacities (hemoglobin, myoglobin, and total body oxygen stores) after weaning their pups, which was further reflected in shorter dive durations. We demonstrate that lactational iron transfer shapes physiologic dive thresholds, identifying a cost of reproduction to a marine mammal.
  • Article
    Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans
    (Nature Research, 2023-10-16) Strauss, Jan ; Deng, Longji ; Gao, Shiqiang ; Toseland, Andrew ; Bachy, Charles ; Zhang, Chong ; Kirkham, Amy L. ; Hopes, Amanda ; Utting, Robert ; Joest, Eike F. ; Tagliabue, Alessandro ; Low, Christian ; Worden, Alexandra Z. ; Nagel, Georg ; Mock, Thomas
    Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
  • Article
    Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein
    (Oxford University Press, 2023-05-27) Butkovic, Anamarija ; Kraberger, Simona ; Smeele, Zoe ; Martin, Darren P. ; Schmidlin, Kara ; Fontenele, Rafaela S. ; Shero, Michelle R. ; Beltran, Roxanne S. ; Kirkham, Amy L. ; Aleamotu'a, Maketalena ; Burns, Jennifer M. ; Koonin, Eugene V. ; Varsani, Arvind ; Krupovic, Mart
    Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between β-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom(realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.