Kapit
Jason
Kapit
Jason
No Thumbnail Available
Search Results
Now showing
1 - 13 of 13
-
DatasetHollow Core Fiber Methane Sensor(Woods Hole Oceanographic Institution, 2021-08-10) Michel, Anna P. M. ; Kapit, JasonWe have developed a hollow core fiber optic sensor capable of measuring dissolved methane gas in liquids using only nanoliters of sample gas. The sensor is based on an anti-resonant hollow core fiber combined with a permeable capillary membrane inlet which extracts gas from the liquid for analysis.
-
ArticleDesign optimization of a submersible chemiluminescent sensor (DISCO) for improved quantification of reactive oxygen species (ROS) in surface waters(MDPI, 2022-09-03) Grabb, Kalina C. ; Pardis, William A. ; Kapit, Jason ; Wankel, Scott D. ; Hayden, Eric B. ; Hansel, Colleen M.Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2−) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.
-
ArticleDiscovering hydrothermalism from afar: In Situ methane instrumentation and change-point detection for decision-making(Frontiers Media, 2022-10-25) Preston, Victoria Lynn ; Flaspohler, Genevieve Elaine ; Kapit, Jason ; Pardis, William A. ; Youngs, Sarah ; Martocello, Donald E., III ; Roy, Nicholas ; Girguis, Peter R. ; Wankel, Scott ; Michel, Anna P. M.Seafloor hydrothermalism plays a critical role in fundamental interactions between geochemical and biological processes in the deep ocean. A significant number of hydrothermal vents are hypothesized to exist, but many of these remain undiscovered due in part to the difficulty of detecting hydrothermalism using standard sensors on rosettes towed in the water column or robotic platforms performing surveys. Here, we use in situ methane sensors to complement standard sensing technology for hydrothermalism discovery and compare sensors on a towed rosette and an autonomous underwater vehicle (AUV) during a 17 km long transect in the Northern Guaymas Basin in the Gulf of California. This transect spatially intersected with a known hydrothermally active venting site. These data show that methane signalled possible hydrothermal-activity 1.5–3 km laterally (100–150 m vertically) from a known vent. Methane as a signal for hydrothermalism performed similarly to standard turbidity sensors (plume detection 2.2–3.3 km from reference source), and more sensitively and clearly than temperature, salinity, and oxygen instruments which readily respond to physical mixing in background seawater. We additionally introduce change-point detection algorithms—streaming cross-correlation and regime identification—as a means of real-time hydrothermalism discovery and discuss related data supervision technologies that could be used in planning, executing, and monitoring explorative surveys for hydrothermalism.
-
Working PaperPump it Up workshop report(Woods Hole Oceanographic Institution, 2017-10-20) Buesseler, Ken O. ; Adams, Allan ; Bellingham, James G. ; Dever, Mathieu ; Edgcomb, Virginia P. ; Estapa, Margaret L. ; Frank, Alex ; Gallager, Scott M. ; Govindarajan, Annette F. ; Horner, Tristan J. ; Hunter, Jon ; Jakuba, Michael V. ; Kapit, Jason ; Katija, Kakani ; Lawson, Gareth L. ; Lu, Yuehan ; Mahadevan, Amala ; Nicholson, David P. ; Omand, Melissa M. ; Palevsky, Hilary I. ; Rauch, Chris ; Sosik, Heidi M. ; Ulmer, Kevin M. ; Wurgaft, Eyal ; Yoerger, Dana R.A two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances.
-
ArticleDissolved gas sensing using an anti-resonant hollow core optical fiber(Optical Society of America, 2021-11-15) Kapit, Jason ; Michel, Anna P. M.Sensors that measure dissolved gases directly are needed for environmental, industrial, and biomedical applications. Here we present a hollow core fiber optic sensor capable of measuring dissolved methane gas in liquids using only nanoliters of sample gas. The sensor is based on an anti-resonant hollow core fiber combined with a permeable capillary membrane inlet that extracts gas from the liquid for analysis. Using a small capillary inlet for gas extraction is only possible due to the small amount of sample gas needed for analysis, and it presents new possibilities for dissolved gas analysis in a simple, robust, and compact sensor configuration. We demonstrate the sensing technique using wavelength modulation spectroscopy and measure methane dissolved in water with a 1𝜎 lower detection limit of 230 ppb, a resolution of 45 ppb, and a response time of ∼8min.
-
ArticleDevelopment of a deep-sea submersible chemiluminescent analyzer for sensing short-lived reactive chemicals(MDPI, 2022-02-22) Taenzer, Lina ; Grabb, Kalina C. ; Kapit, Jason ; Pardis, William A. ; Wankel, Scott D. ; Hansel, Colleen M.Based on knowledge of their production pathways, and limited discrete observations, a variety of short-lived chemical species are inferred to play active roles in chemical cycling in the sea. In some cases, these species may exert a disproportionate impact on marine biogeochemical cycles, affecting the redox state of metal and carbon, and influencing the interaction between organisms and their environment. One such short-lived chemical is superoxide, a reactive oxygen species (ROS), which undergoes a wide range of environmentally important reactions. Yet, due to its fleeting existence which precludes traditional shipboard analyses, superoxide concentrations have never been characterized in the deep sea. To this end, we have developed a submersible oceanic chemiluminescent analyzer of reactive intermediate species (SOLARIS) to enable continuous measurements of superoxide at depth. Fluidic pumps on SOLARIS combine seawater for analysis with reagents in a spiral mixing cell, initiating a chemiluminescent reaction that is monitored by a photomultiplier tube. The superoxide in seawater is then related to the quantity of light produced. Initial field deployments of SOLARIS have revealed high-resolution trends in superoxide throughout the water column. SOLARIS presents the opportunity to constrain the distributions of superoxide, and any number of chemiluminescent species in previously unexplored environments.
-
ArticleToward a new era of coral reef monitoring(American Chemical Society, 2023-03-17) Apprill, Amy ; Girdhar, Yogesh ; Mooney, T. Aran ; Hansel, Colleen M. ; Long, Matthew H. ; Liu, Yaqin ; Zhang, W. Gordon ; Kapit, Jason ; Hughen, Konrad ; Coogan, Jeff ; Greene, AustinCoral reefs host some of the highest concentrations of biodiversity and economic value in the oceans, yet these ecosystems are under threat due to climate change and other human impacts. Reef monitoring is routinely used to help prioritize reefs for conservation and evaluate the success of intervention efforts. Reef status and health are most frequently characterized using diver-based surveys, but the inherent limitations of these methods mean there is a growing need for advanced, standardized, and automated reef techniques that capture the complex nature of the ecosystem. Here we draw on experiences from our own interdisciplinary research programs to describe advances in in situ diver-based and autonomous reef monitoring. We present our vision for integrating interdisciplinary measurements for select “case-study” reefs worldwide and for learning patterns within the biological, physical, and chemical reef components and their interactions. Ultimately, these efforts could support the development of a scalable and standardized suite of sensors that capture and relay key data to assist in categorizing reef health. This framework has the potential to provide stakeholders with the information necessary to assess reef health during an unprecedented time of reef change as well as restoration and intervention activities.
-
DatasetTag attachment device on a pole (TADpole)(Woods Hole Oceanographic Institution, 2024-01-23) Lanagan, Thomas ; Kapit, Jason ; Moore, Michael J.To attach satellite-linked telemetry tags to bow-riding and surface swimming large marine vertebrates such as dolphins and sharks, a pole mounted, pneumatically powered tool has been developed. It uses the proven single-pin dorsal fin attachment method.
-
DatasetDiscovering hydrothermalism from afar: in situ methane instrumentation and change-point detection for decision-making(Woods Hole Oceanographic Institution, 2022-10-06) Michel, Anna P. M. ; Wankel, Scott D. ; Preston, Victoria Lynn ; Flaspohler, Genevieve Elaine ; Kapit, Jason ; Pardis, William A. ; Youngs, Sarah ; Martocello, Donald E. ; Girguis, Peter R. ; Roy, NicholasSeafloor hydrothermalism plays a critical role in fundamental interactions between geochemical and biological processes in the deep ocean. A significant number of hydrothermal vents are hypothesized to exist, but many of these remain undiscovered due in part to the difficulty of detecting hydrothermalism using standard sensors on rosettes towed in the water column or robotic platforms performing surveys. Here, we use in situ methane sensors to complement standard sensing technology for hydrothermalism discovery and compare sensing equipment on a towed rosette and autonomous underwater vehicle (AUV) during a 17 km long transect in the Northern Guaymas Basin. This transect spatially intersected with a known hydrothermally active venting site. These data show that methane signaled possible hydrothermal activity 1.5-3 km laterally (100-150m vertically) from a known vent. Methane as a signal for hydrothermalism performed similarly to standard turbidity sensors (plume detection 2.2-3.3 km from reference source), and more sensitively and clearly than temperature, salinity, and oxygen instruments which readily respond to physical mixing in background seawater. We additionally introduce change-point detection algorithms---streaming cross-correlation and regime identification---as a means of real-time hydrothermalism discovery and discuss related data monitoring technologies that could be used in planning, executing, and monitoring explorative surveys for hydrothermalism.
-
ArticleCorals and sponges are hotspots of reactive oxygen species in the deep sea(National Academy of Sciences, 2023-11-15) Taenzer, Lina ; Wankel, Scott D. ; Kapit, Jason ; Pardis, William A. ; Herrera, Santiago ; Auscavitch, Steven R. ; Grabb, Kalina C. ; Cordes, Erik ; Hansel, Colleen M.Reactive oxygen species (ROS) are central to diverse biological processes through which organisms respond to and interact with their surroundings. Yet, a lack of direct measurements limits our understanding of the distribution of ROS in the ocean. Using a recently developed in situ sensor, we show that deep-sea corals and sponges produce the ROS superoxide, revealing that benthic organisms can be sources and hotspots of ROS production in these environments. These findings confirm previous contentions that extracellular superoxide production by corals can be independent of the activity of photosynthetic symbionts. The discovery of deep-sea corals and sponges as sources of ROS has implications for the physiology and ecology of benthic organisms and introduces a previously overlooked suite of redox reactants at depth.
-
ArticleDevelopment of a quantum cascade laser absorption spectrometer for simultaneous measurement of 13C-18O and 18O-18O clumping in CO2(Wiley, 2024-06-18) Wieman, Scott T. ; Kapit, Jason ; Michel, Anna P. M. ; Guo, WeifuDual clumped isotope paleothermometry determines carbonate formation temperatures by measuring the frequency of 13C–18O (∆638) and 18O–18O (∆828) pairs in carbonates. It resolves isotopic kinetic biases and thus enables more accurate paleotemperature reconstructions. However, high-precision measurements of 18O–18O clumping using current techniques requires large sample sizes and long acquisition times. We developed a mid-infrared isotope ratio laser spectrometer (IRLS) for simultaneous measurement of the isotopologue ratios ∆638 and ∆828 in gas-phase carbon dioxide (CO2) at room temperature. Our IRLS uses a single laser scanning from 2290.7 to 2291.1 cm−1 and a 31 m pathlength optical cell, and it simultaneously measures the five isotopologues required for calculating ∆638 and ∆828: 16O12C16O, 16O13C16O, 16O12C18O, 16O13C18O, and 18O12C18O. In addition, our IRLS can measure 16O12C17O, enabling ∆17O analysis. At ~20°C and a CO2 pressure of ~2 Torr, our IRLS system achieved precisions of 0.128‰ and 0.140‰ within 20 s for abundances of the clumped isotopologues 16O13C18O and 18O12C18O, respectively, and precisions of 0.267‰, 0.245‰, and 0.128‰ for 16O12C16O, 16O13C16O, and 16O12C18O. This yielded precisions of 0.348‰ (∆638) and 0.302‰ (∆828) within 25 s. Simulated sample–reference switching highlights the potential of our system and the need for further development. We demonstrated simultaneous measurements of ∆638 and ∆828 in CO2 to precisions of <0.35‰ within 25 s using a room-temperature, single-laser IRLS. Future developments on better resolving 16O12C16O and 16O13C16O peaks and system temperature control could further improve the measurement precision.
-
ArticleDevelopment of single-pin, un-barbed, pole-tagging of free-swimming dolphins and sharks with satellite-linked transmitters(BioMed Central, 2024-04-15) Moore, Michael J. ; Lanagan, Thomas M. ; Wells, Randall S. ; Kapit, Jason ; Barleycorn, Aaron A. ; Allen, Jason B. ; Baird, Robin W. ; Braun, Camrin D. ; Skomal, Gregory B. ; Thorrold, Simon R.To tag large marine vertebrates, without the need to catch them, avoiding using barbs for tag retention, and precisely controlling tag location, the remote Tag Attachment Device on a pole (TADpole) was developed. This allows single-pin tags (Finmount, Wildlife Computers) to be attached to the dorsal fins of free-swimming large marine vertebrates.
-
DatasetVoltage scans from a prototype hollow core fiber isotope ratio laser spectrometer(Woods Hole Oceanographic Institution, 2024-08-22) Wieman, Scott T. ; Kapit, Jason ; Guo, Weifu ; Michel, Anna P. M.This dataset consists of 900 one-second-long voltage acquisitions across 2000 detector channels from a prototype hollow core fiber isotope ratio laser spectrometer developed and operated at the Woods Hole Oceanographic Institution’s David Center for Ocean Innovation. Each acquisition covers a spectral range of ~2290.55 to 2299.15 cm-1. The operational conditions are 2.5 torr of pure CO2 in a 1m-long hollow core fiber with an inner diameter of 200 µm at room temperature (~20ºC). The laser was scanned across this spectral range at 50kHz and each one-second acquisition is the average of 50000 individual spectral scans within that one second.