Marchal Olivier

No Thumbnail Available
Last Name
Marchal
First Name
Olivier
ORCID

Search Results

Now showing 1 - 20 of 26
  • Preprint
    Kinetics of thorium and particle cycling along the U.S. GEOTRACES North Atlantic Transect
    ( 2017-05) Lerner, Paul ; Marchal, Olivier ; Lam, Phoebe J. ; Buesseler, Ken O. ; Charette, Matthew A.
    The high particle reactivity of thorium has resulted in its widespread use in tracing processes impacting marine particles and their chemical constituents. The use of thorium isotopes as tracers of particle dynamics, however, largely relies on our understanding of how the element scavenges onto particles. Here, we estimate apparent rate constants of Th adsorption (k1), Th desorption (k−1), bulk particle degradation (β-1), and bulk particle sinking speed (w) along the water column at 11 open-ocean stations occupied during the GEOTRACES North Atlantic Section (GA03). First, we provide evidence that the budgets of Th isotopes and particles at these stations appear to be generally dominated by radioactive production and decay sorption reactions, particle degradation, and particle sinking. Rate parameters are then estimated by fitting a Th and particle cycling model to data of dissolved and particulate 228,230,234Th, 228Ra, particle concentrations, and 234,238U estimates based on salinity, using a nonlinear programming technique. We find that the adsorption rate constant (k1) generally decreases with depth across the section: broadly, the time scale 1/k1 averages 1.0 yr in the upper 1000 m and (1.4–1.5) yr below. A positive relationship between k1 and particle concentration (P) is found, i.e., , k1 ∝ Pb where b ≥ 1, consistent with the notion that k1 increases with the number of surface sites available for adsorption. The rate constant ratio, K = k1/(k-1 + β-1), which measures the collective influence of rate parameters on Th scavenging, averages 0.2 for most stations and most depths. We clarify the conditions under which K/P is equivalent to the distribution coefficient, KD, test that the conditions are met at the stations, and find that decreases with P, in line with a particle concentration effect (dKD/dP < 0). In contrast to the influence of colloids as envisioned by the Brownian pumping hypothesis, we provide evidence that the particle concentration effect arises from the joint effect of P on the rate constants for thorium attachment to, and detachment from, particles.
  • Article
    A synthesis of deglacial deep‐sea radiocarbon records and their (in)consistency with modern ocean ventilation
    (John Wiley & Sons, 2018-01-08) Zhao, Ning ; Marchal, Olivier ; Keigwin, Lloyd D. ; Amrhein, Daniel E. ; Gebbie, Geoffrey A.
    We present a synthesis of 1,361 deep‐sea radiocarbon data spanning the past 40 kyr and computed (for 14C‐dated records) from the same calibration to atmospheric 14C. The most notable feature in our compilation is a long‐term Δ14C decline in deep oceanic basins over the past 25 kyr. The Δ14C decline mirrors the drop in reconstructed atmospheric Δ14C, suggesting that it may reflect a decrease in global 14C inventory rather than a redistribution of 14C among different reservoirs. Motivated by this observation, we explore the extent to which the deep water Δ14C data jointly require changes in basin‐scale ventilation during the last deglaciation, based on the fit of a 16‐box model of modern ocean ventilation to the deep water Δ14C records. We find that the fit residuals can largely be explained by data uncertainties and that the surface water Δ14C values producing the fit are within the bounds provided by contemporaneous values of atmospheric and deep water Δ14C. On the other hand, some of the surface Δ14C values in the northern North Atlantic and the Southern Ocean deviate from the values expected from atmospheric 14CO2 and CO2 concentrations during the Heinrich Stadial 1 and the Bølling‐Allerød. The possibility that deep water Δ14C records reflect some combination of changes in deep circulation and surface water reservoir ages cannot be ruled out and will need to be investigated with a more complete model.
  • Preprint
    Contribution of Th-230 measurements to the estimation of the abyssal circulation
    ( 2007-01-02) Marchal, Olivier ; Francois, Roger ; Scholten, Jan C.
    An inverse finite-difference model of the abyssal circulation in the North Atlantic Ocean is developed in order to evaluate the dynamical information contained in measurements of thorium-230 (230Th). The model has a very coarse resolution and is based on lowest order balances for planetary flows. The naturally occurring 230Th differs from more conventional oceanic tracers in several respects, e.g., its production (by 234U radioactive decay) is globally uniform to a good approximation and its removal can be understood in terms of a simple reversible exchange with particles sinking slowly to the seafloor. The time required for 230Th to reach steady state with respect to particle exchange is estimated to increase with depth, reaching O(10) yr below 1000 m. In the North Atlantic 230Th activities at distant locations share a similar increase with depth in the upper 1000m—a pattern consistent with a reversible exchange—but show drastic differences in the abyssal interior. Two inversions are conducted in order to determine whether the 230Th differences reflect the effects of the circulation—by preventing the slow attainment to steady state w.r.t. particle exchange in deep water—and provide complementary information about the abyssal flow. In a first inversion, observations of density from a hydrographic compilation and of volume transports at specific locations are combined with the dynamical balances in order to infer the basin-scale flow. The inferred flow displays the western boundary current and coherent structures in the abyssal interior with low statistical significance. In a second inversion, the flow is further constrained by the 230Th measurements and the condition that 230Th divergence by the flow field and particle sinking must be locally balanced by 230Th production from 234U decay. The addition of 230Th leads to the estimation of a larger amplitude of the integrated meridional transports below 1000 m (by 2–9 Sv), where the range reflects the uncertainties in the large scale 230Th distribution and in the radiochemical balance. This result is interpreted as a correction by 230Th for the tendency of inverse geostrophic models to lead to the inference of a vanishing circulation when horizontal density gradients are insignificant.
  • Article
    On the estimation of deep Atlantic ventilation from fossil radiocarbon records. part I: modern reference estimates
    (American Meteorological Society, 2021-05-18) Marchal, Olivier ; Zhao, Ning
    Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of two companion papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in Part II. We find that, for all estimates, the meridional transport integrated zonally and averaged over a hemisphere, ⟨Vk⟩, is southward between 1000 and 4000 m in both hemispheres, northward between 4000 and 5000 m in the South Atlantic, and insignificant between 4000 and 5000 m in the North Atlantic. Estimates of ⟨Vk⟩ obtained from two distinct prior circulations—one based on a level of no motion at 4000 m and one based on Argo float velocities at 1000 m—become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk=Vk/⟨Vk⟩, where Vk is the volume of the kth layer, is estimated to about a century between 1000 and 3000 m in both the South and North Atlantic, 124 ± 9 yr (203 ± 23 yr) between 3000 and 4000 m in the South (North) Atlantic, and 269 ± 115 yr between 4000 and 5000 m in the South Atlantic.
  • Article
    A global glacial ocean state estimate constrained by upper-ocean temperature proxies
    (American Meteorological Society, 2018-08-28) Amrhein, Daniel E. ; Wunsch, Carl ; Marchal, Olivier ; Forget, Gael
    We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.
  • Preprint
    Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section
    ( 2016-03-31) Lerner, Paul ; Marchal, Olivier ; Lam, Phoebe J. ; Anderson, Robert F. ; Buesseler, Ken O. ; Charette, Matthew A. ; Edwards, R. Lawrence ; Hayes, Christopher T. ; Huang, Kuo-Fang ; Lu, Yanbin ; Robinson, Laura F. ; Solow, Andrew R.
    Thorium is a highly particle-reactive element that possesses different measurable radio-isotopes in seawater, with well-constrained production rates and very distinct half-lives. As a result, Th has emerged as a key tracer for the cycling of marine particles and of their chemical constituents, including particulate organic carbon. Here two different versions of a model of Th and particle cycling in the ocean are tested using an unprecedented data set from station GT11-22 of the U.S. GEOTRACES North Atlantic Section: (i) 21 228;230;234Th activities of dissolved and particulate fractions, (ii) 228Ra activities, (iii) 234;238U activities estimated from salinity data and an assumed 234U/238U ratio, and (iv) particle concentrations, below a depth of 125 m. The two model versions assume a single class of particles but rely on different assumptions about the rate parameters for sorption reactions and particle processes: a first version (V1) assumes vertically uniform parameters (a popular description), whereas the second (V2) does not. Both versions are tested by fitting to the GT11-22 data using generalized nonlinear least squares and by analyzing residuals normalized to the data errors. We find that model V2 displays a significantly better fit to the data than model V1. Thus, the mere allowance of vertical variations in the rate parameters can lead to a significantly better fit to the data, without the need to modify the structure or add any new processes to the model. To understand how the better fit is achieved we consider two parameters, K = k1=(k-1 + β-1) and K/P, where k1 is the adsorption rate constant, k-1 the desorption rate constant, β-1 the remineralization rate constant, and P the particle concentration. We find that the rate constant ratio K is large (≥0.2) in the upper 1000 m and decreases to a nearly uniform value of ca. 0.12 below 2000 m, implying that the specific rate at which Th attaches to particles relative to that at which it is released from particles is higher in the upper ocean than in the deep ocean. In contrast, K/P increases with depth below 500 m. The parameters K and K/P display significant positive and negative monotonic relationship with P, respectively, which is collectively consistent with a particle concentration effect.
  • Article
    Extratropical Rossby waves in the presence of buoyancy mixing
    (American Meteorological Society, 2009-11) Marchal, Olivier
    The propagation of Rossby waves on a midlatitude β plane is investigated in the presence of density diffusion with the aid of linear hydrostatic theory. The search for wave solutions in a vertically bounded medium subject to horizontal (vertical) diffusion leads to an eigenvalue problem of second (fourth) order. Exact solutions of the problem are obtained for uniform background stratification (N), and approximate solutions are constructed for variable N using the Wentzel–Kramers–Brillouin method. Roots of the eigenvalue relations for free waves are found and discussed. The barotropic wave of adiabatic theory is also a solution of the eigenvalue problem as this is augmented with density diffusion in the horizontal or vertical direction. The barotropic wave is undamped as fluid parcels in the wave move only horizontally and are therefore insensitive to the vortex stretching induced by mixing. On the other hand, density diffusion modifies the properties of baroclinic waves of adiabatic theory. In the presence of horizontal diffusion the baroclinic modes are damped but their vertical structure remains unaltered. The ability of horizontal diffusion to damp baroclinic waves stems from its tendency to counteract the deformation of isopycnal surfaces caused by the passage of these waves. The damping rate increases (i) linearly with horizontal diffusivity and (ii) nonlinearly with horizontal wavenumber and mode number. In the presence of vertical diffusion the baroclinic waves suffer both damping and a change in vertical structure. In the long-wave limit the damping is critical (wave decay rate numerically equal to wave frequency) and increases as the square roots of vertical diffusivity and zonal wavenumber. Density diffusion in the horizontal or vertical direction reduces the amplitude of the phase speed of westward-propagating waves. Observational estimates of eddy diffusivities suggest that horizontal and vertical mixing strongly attenuates baroclinic waves in the ocean but that vertical mixing is too weak to notably modify the vertical structure of the gravest modes.
  • Article
    Milankovitch forcing and meridional moisture flux in the atmosphere : insight from a zonally averaged ocean–atmosphere model
    (American Meteorological Society, 2010-09-15) Antico, Andres ; Marchal, Olivier ; Mysak, Lawrence A. ; Vimeux, Francoise
    A 1-Myr-long time-dependent solution of a zonally averaged ocean–atmosphere model subject to Milankovitch forcing is examined to gain insight into long-term changes in the planetary-scale meridional moisture flux in the atmosphere. The model components are a one-dimensional (latitudinal) atmospheric energy balance model with an active hydrological cycle and an ocean circulation model representing four basins (Atlantic, Indian, Pacific, and Southern Oceans). This study finds that the inclusion of an active hydrological cycle does not significantly modify the responses of annual-mean air and ocean temperatures to Milankovitch forcing found in previous integrations with a fixed hydrological cycle. Likewise, the meridional overturning circulation of the North Atlantic Ocean is not significantly affected by hydrological changes. Rather, it mainly responds to precessionally driven variations of ocean temperature in subsurface layers (between 70- and 500-m depth) of this basin. On the other hand, annual and zonal means of evaporation rate and meridional flux of moisture in the atmosphere respond notably to obliquity-driven changes in the meridional gradient of annual-mean insolation. Thus, when obliquity is decreased (increased), the meridional moisture flux in the atmosphere is intensified (weakened). This hydrological response is consistent with deuterium excess records from polar ice cores, which are characterized by dominant obliquity cycles.
  • Preprint
    Time-dependent response of a zonally averaged ocean–atmosphere–sea ice model to Milankovitch forcing
    ( 2010-03) Antico, Andres ; Marchal, Olivier ; Mysak, Lawrence A.
    An ocean-atmosphere-sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (i) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (ii) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N-65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.
  • Preprint
    Effects of particle composition on thorium scavenging in the North Atlantic
    ( 2018-04) Lerner, Paul ; Marchal, Olivier ; Lam, Phoebe J. ; Solow, Andrew R.
    The dependence of thorium scavenging by particles on particle composition is examined at selected stations of the U.S. GEOTRACES North Atlantic Section (GA03). Scavenging is here described by the apparent, first-order rate constant of Th adsorption onto particles (k1), as estimated from an inversion of Th radioisotope and radioactive parent data. Our k1 estimates are regressed against particle phase data using two different models. Model I considers biogenic particles (POC+PIC+bSi), lithogenic particles, Mn (oxyhydr)oxides, and Fe (oxyhydr)oxides as regressors, and k1 as the regressand. Model II considers ln(POC+PIC+bSi), ln(lithogenic particles), ln(Mn (oxyhydr)oxides), and ln(Fe (oxyhydr)oxides) as regressors, and ln(k1) as the regressand, where ln() denotes the natural logarithm. Thus, models I and II posit that the effects of particle phases on k1 are, respectively, additive and multiplicative. These models are applied to three groups of stations: (i) all selected stations, (ii) stations west of theMauritanian upwelling region (“western stations”), and (iii) stations within that region (“eastern stations”). We find that model II appears to better describe the effect of particle composition on k1 than model I. Particle composition explains a larger fraction of the variance of k1 for the eastern stations (R2 = 0.60 for model I and 0.67 for model II) than for the western stations (R2 = 0.26 for model I and 0.39 for model II). When considering all stations, the variance of k1 explained by particle composition is intermediate (R2 = 0.50 for model I and 0.51 for model II). According to model II, the variance of k1 explained by particle composition is predominantly due to biogenic particles at the eastern stations and to Mn (oxyhydr)oxides at the western stations. Additionally, we find that particle composition does not explain a significantly different proportion of variance of k1 than particle concentration. It is thus concluded that, at our selected stations, (i) biogenic particles andMn (oxyhydr)oxides more strongly influence Th scavenging than any other phases considered, and (ii) particle composition and particle concentration have comparable effects on this process.
  • Article
    Application of an inverse method to interpret 231Pa/230Th observations from marine sediments
    (American Geophysical Union, 2011-03-16) Burke, Andrea ; Marchal, Olivier ; Bradtmiller, Louisa I. ; McManus, Jerry F. ; Francois, Roger
    Records of 231Pa/230Th from Atlantic sediments have been interpreted to reflect changes in ocean circulation during the geologic past. Such interpretations should be tested with due regard to the limited spatial coverage of 231Pa/230Th data and the uncertainties in our current understanding of the behavior of both nuclides in the ocean. Here an inverse method is used to evaluate the information contained in 231Pa/230Th compilations for the Holocene, Last Glacial Maximum (LGM), and Heinrich Event 1 (H1). An estimate of the abyssal circulation in the modern Atlantic Ocean is obtained by combining hydrographic observations and dynamical constraints. Then sediment 231Pa/230Th data for each time interval are combined with an advection-scavenging model in order to determine their (in)consistency with the modern circulation estimate. We find that the majority of sediment 231Pa/230Th data for the Holocene, LGM, or H1 can be brought into consistency with the modern circulation if plausible assumptions are made about the large-scale distribution of 231Pa and about model uncertainties. Moreover, the adjustments in the data needed to reach compatibility with a hypothetical state of no flow (no advection) are positively biased for each time interval, suggesting that the 231Pa/230Th data (including that for H1) are more consistent with a persistence of some circulation than with no circulation. Our study does not imply that earlier claims of a circulation change during the LGM or H1 are inaccurate, but that these claims cannot be given a rigorous basis given the current uncertainties involved in the analysis of the 231Pa/230Th data.
  • Preprint
    Particle transport in horizontal convection : implications for the "Sandström theorem"
    ( 2006-04-25) Marchal, Olivier
    The 'Sandström theorem' as interpreted by Jeffreys (1925) is that in a flow maintained by a temperature difference, the pathline from the cold region to the warm region must lie below the return path. A formal demonstration of the argument for a rotating fluid requires three assumptions about the relative circulation around a closed material line: (i) the flow is steady, (ii) the closed material line is a closed streamline and (iii) the work done by friction along the streamline is negative. The argument extends to unsteady flows, thereby relaxing (i-ii), if the absolute circulation along the material line is a bounded function of time - a condition that is met for flows with small Rossby number. Its validity for time-periodic two-dimensional flows of horizontal convection is verified numerically. Poincaré sections reveal the presence of chaotic particle transport in these flows, even though the Eulerian velocity fields have a simple time dependence. In spite of chaotic advection, particle motion is in general downwards in the cold region and upwards in the warm region of the fluid, which is consistent with the flow shape envisioned by Jeffreys. This paper gives support to the validity of his argument for the unsteady case and enhances its relevance for the dynamical interpretation of the basic structure of geophysical flows.
  • Preprint
    Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records : implications for ocean circulation
    (John Wiley & Sons, 2015-11-12) Amrhein, Daniel E. ; Gebbie, Geoffrey A. ; Marchal, Olivier ; Wunsch, Carl
    The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed “upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.
  • Article
    On material transport by shelfbreak eddies
    (American Meteorological Society, 2019-02-18) Marchal, Olivier
    The Lagrangian motion in the eddy field produced from an unstable retrograde jet along the shelf break is studied from idealized numerical experiments with a primitive equation model. The jet is initially in thermal wind balance with a cross-isobath density gradient and is not subjected to any atmospheric forcing. Over the course of the model integration, the jet becomes unstable and produces a quasi-stationary eddy field over a 2-month period. During this period, the cross-slope flow at the shelf break is characterized by along-slope correlation scales of O(10) km and temporal correlation scales of a few days. The relative dispersion of parcels across isobaths is found to increase with time as tb, where 1 < b < 2. This mixed diffusive–ballistic regime appears to reflect the combined effects of (i) the short length scales of velocity correlation at the shelf break and (ii) the seaward excursion of monopolar and dipolar vortices. Cross-slope dispersion is greater offshore of the front than inshore of the front, as offshore parcels are both subducted onshore below density surfaces and translated offshore with eddies. Nonetheless, the exchange of parcels across the jet remains very limited on the monthly time scale. Particles originating from the bottom experience upward displacements of a few tens of meters and seaward displacements of O(100) km, suggesting that the eddy activity engendered by an unstable along-slope jet provides another mechanism for bottom boundary layer detachment near the shelf edge.
  • Article
    Methanesulfonic acid (MSA) migration in polar ice : data synthesis and theory
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-11-03) Osman, Matthew B. ; Das, Sarah B. ; Marchal, Olivier ; Evans, Matthew J.
    Methanesulfonic acid (MSA; CH3SO3H) in polar ice is a unique proxy of marine primary productivity, synoptic atmospheric transport, and regional sea-ice behavior. However, MSA can be mobile within the firn and ice matrix, a post-depositional process that is well known but poorly understood and documented, leading to uncertainties in the integrity of the MSA paleoclimatic signal. Here, we use a compilation of 22 ice core MSA records from Greenland and Antarctica and a model of soluble impurity transport in order to comprehensively investigate the vertical migration of MSA from summer layers, where MSA is originally deposited, to adjacent winter layers in polar ice. We find that the shallowest depth of MSA migration in our compilation varies over a wide range (∼ 2 to 400 m) and is positively correlated with snow accumulation rate and negatively correlated with ice concentration of Na+ (typically the most abundant marine cation). Although the considered soluble impurity transport model provides a useful mechanistic framework for studying MSA migration, it remains limited by inadequate constraints on key physico-chemical parameters – most notably, the diffusion coefficient of MSA in cold ice (DMS). We derive a simplified version of the model, which includes DMS as the sole parameter, in order to illuminate aspects of the migration process. Using this model, we show that the progressive phase alignment of MSA and Na+ concentration peaks observed along a high-resolution West Antarctic core is most consistent with 10−12 m2 s−1 < DMS < 10−11 m2 s−1, which is 1 order of magnitude greater than the DMS values previously estimated from laboratory studies. More generally, our data synthesis and model results suggest that (i) MSA migration may be fairly ubiquitous, particularly at coastal and (or) high-accumulation regions across Greenland and Antarctica; and (ii) can significantly change annual and multiyear MSA concentration averages. Thus, in most cases, caution should be exercised when interpreting polar ice core MSA records, although records that have undergone severe migration could still be useful for inferring decadal and lower-frequency climate variability.
  • Article
    On the observability of oceanic gyres
    (American Meteorological Society, 2014-09) Marchal, Olivier
    This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.
  • Article
    On the estimation of deep Atlantic ventilation from fossil radiocarbon records. Part II: (in)consistency with modern estimates
    (American Meteorological Society, 2021-08-01) Marchal, Olivier ; Zhao, Ning
    Measurements of radiocarbon concentration (Δ14C) in fossil biogenic carbonates have been interpreted as reflecting a reduced ventilation of the deep Atlantic during the last ice age. Here we evaluate the (in)consistency of an updated compilation of fossil Δ14C data for the last deglaciation with the abyssal circulation in the modern Atlantic. A Δ14C transport equation, in which the mean velocity field is a modern field estimate and turbulent flux divergence is treated as a random fluctuation, is fitted to deglacial Δ14C records by using recursive weighted least squares. This approach allows us to interpret the records in terms of deviations from the modern flow with due regard for uncertainties in the fossil data, the Δ14C transport equation, and its boundary conditions. We find that the majority of fit residuals could be explained by uncertainties in fossil Δ14C data, for two distinct estimates of the modern flow and of the error variance in the boundary conditions. Thus, most, not all, deglacial data appear consistent with present-day ventilation rates. From 20% to 32% of the residuals exceed in magnitude the published errors in the fossil data by a factor of 2. Residuals below 4000 m in the western North Atlantic are all negative, suggesting that deglacial Δ14C values from this region are too low to be explained by modern ventilation. While deep water ventilation appeared different from today at some locations, a larger database and a better understanding of error (co)variances are needed to make reliable paleoceanographic inferences from fossil Δ14C records.
  • Article
    A box model test of the freshwater forcing hypothesis of abrupt climate change and the physics governing ocean stability
    (American Geophysical Union, 2010-12-07) Jackson, Charles S. ; Marchal, Olivier ; Liu, Yurun ; Lu, Shaoping ; Thompson, William G.
    Observations and an ocean box model are combined in order to test the adequacy of the freshwater forcing hypothesis to explain abrupt climate change given the uncertainties in the parameterization of vertical buoyancy transport in the ocean. The combination is carried out using Bayesian stochastic inversion, which allows us to infer changes in the mass balance of Northern Hemisphere (NH) ice sheets and in the meridional transports of mass and heat in the Atlantic Ocean that would be required to explain Dansgaard-Oeschger Interstadials (DOIs) from 30 to 39 kyr B.P. The mean sea level changes implied by changes in NH ice sheet mass balance agree in amplitude and timing with reconstructions from the geologic record, which gives some support to the freshwater forcing hypothesis. The inversion suggests that the duration of the DOIs should be directly related to the growth of land ice. Our results are unaffected by uncertainties in the representation of vertical buoyancy transport in the ocean. However, the solutions are sensitive to assumptions about physical processes at polar latitudes.
  • Article
    Can paleoceanographic tracers constrain meridional circulation rates?
    (American Meteorological Society, 2007-02) Huybers, Peter ; Gebbie, Geoffrey A. ; Marchal, Olivier
    The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.
  • Preprint
    What can paired measurements of Th isotope activity and particle concentration tell us about particle cycling in the ocean?
    ( 2012-04-17) Marchal, Olivier ; Lam, Phoebe J.
    The ability of paired measurements of thorium isotope activity and particle concentration to constrain rate constants of sorption reactions and particle dynamics in the ocean is examined. This study is motivated by GEOTRACES and other sampling programs where Th and particle data are gathered in various oceanic environments. Our approach relies on inversions with a model of trace metal and particle cycling in the water column. First, the model is used to simulate vertical profiles of (i) the activity of three Th isotopes (228,230,234Th) in the dissolved phase, small suspended particles, and large sinking particles, and (ii) the concentration of small and large particles. The simulated profiles are then subsampled and corrupted with noise to generate a pseudo data set. These data are combined with the model with arbitrary values of rate constants of Th adsorption, Th desorption, particle sinking, particle remineralization, and particle (dis)aggregation in an effort to recover the actual values used to generate the data. Inversions are performed using a least-squares technique with varying assumptions about data noise, data sampling, and model errors. We find that accurate and precise recovery of rate parameters is possible when all data have a relative error of less than 20%, vertical sampling is dense enough to resolve activity and concentration gradients, and model errors are negligible. Estimating cycling rates from data with larger errors and (or) at locations where model assumptions are not tenable would remain challenging. On the other hand, the paired data set would improve significantly the relative precision of rate parameters compared to that of prior estimates (⩾100%), even with current data uncertainties and significant model errors. Based on these results, we advocate the joint measurement of all three Th isotopes, 228Ra, and particles collected by in situ filtration within GEOTRACES and other sampling programs targeted at the study of particle processes in the ocean.