Tsai Cheng-Ju

No Thumbnail Available
Last Name
Tsai
First Name
Cheng-Ju
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Eddy-Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon
    (John Wiley & Sons, 2015-10-08) Tsai, Cheng-Ju ; Andres, Magdalena ; Jan, Sen ; Mensah, Vigan ; Sanford, Thomas B. ; Lien, Ren-Chieh ; Lee, Craig M.
    The influence and fate of westward propagating eddies that impinge on the Kuroshio were observed with pressure sensor-equipped inverted echo sounders (PIESs) deployed east of Taiwan and northeast of Luzon. Zero lag correlations between PIES-measured acoustic travel times and satellite-measured sea surface height anomalies (SSHa), which are normally negative, have lower magnitude toward the west, suggesting the eddy-influence is weakened across the Kuroshio. The observational data reveal that impinging eddies lead to seesaw-like SSHa and pycnocline depth changes across the Kuroshio east of Taiwan, whereas analogous responses are not found in the Kuroshio northeast of Luzon. Anticyclones intensify sea surface and pycnocline slopes across the Kuroshio, while cyclones weaken these slopes, particularly east of Taiwan. During the 6 month period of overlap between the two PIES arrays, only one anticyclone affected the pycnocline depth first at the array northeast of Luzon and 21 days later in the downstream Kuroshio east of Taiwan.
  • Article
    Mean structure and fluctuations of the Kuroshio east of Taiwan from in situ and remote observations
    (The Oceanography Society, 2015-12) Yang, Yiing-Jang ; Jan, Sen ; Chang, Ming-Huei ; Wang, Joe ; Mensah, Vigan ; Kuo, Tien-Hsia ; Tsai, Cheng-Ju ; Lee, Chung-Yaung ; Andres, Magdalena ; Centurioni, Luca R. ; Tseng, Yu-Heng ; Liang, Wen-Der ; Lai, Jian-Wu
    The Kuroshio is important to climate, weather prediction, and fishery management along the northeast coast of Asia because it transports tremendous heat, salt, and energy from east of the Philippines to waters southeast of Japan. In the middle of its journey northward, the Kuroshio’s velocity mean and its variability east of Taiwan crucially affect its downstream variability. To improve understanding of the Kuroshio there, multiple platforms were used to collect intensive observations off Taiwan during the three-year Observations of the Kuroshio Transports and their Variability (OKTV) program (2012–2015). Mean Kuroshio velocity transects show two velocity maxima southeast of Taiwan, with the primary velocity core on the onshore side of the Kuroshio exhibiting a mean maximum velocity of ~1.2 m s–1. The two cores then merge and move at a single velocity maximum of ~1 m s–1 east of Taiwan. Standard deviations of both the directly measured poleward (v) and zonal (u) velocities are ~0.4 m s–1 in the Kuroshio main stream. Water mass exchange in the Kuroshio east of Taiwan was found to be complicated, as it includes water of Kuroshio origin, South China Sea Water, and West Philippine Sea Water, and it vitally affects heat, salt, and nutrient inputs to the East China Sea. Impinging eddies and typhoons are two of the principal causes of variability in the Kuroshio. This study’s models are more consistent with the observed Kuroshio than with high-frequency radar measurements.