Mouchet Anne

No Thumbnail Available
Last Name
Mouchet
First Name
Anne
ORCID

Search Results

Now showing 1 - 8 of 8
  • Article
    Oceanic sources, sinks, and transport of atmospheric CO2
    (American Geophysical Union, 2009-02-18) Gruber, Nicolas ; Gloor, Emanuel ; Mikaloff Fletcher, Sara E. ; Doney, Scott C. ; Dutkiewicz, Stephanie ; Follows, Michael J. ; Gerber, Markus ; Jacobson, Andrew R. ; Joos, Fortunat ; Lindsay, Keith ; Menemenlis, Dimitris ; Mouchet, Anne ; Muller, Simon A. ; Sarmiento, Jorge L. ; Takahashi, Taro
    We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.
  • Article
    Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean
    (American Geophysical Union, 2006-04-05) Mikaloff Fletcher, Sara E. ; Gruber, Nicolas ; Jacobson, Andrew R. ; Doney, Scott C. ; Dutkiewicz, Stephanie ; Gerber, Markus ; Follows, Michael J. ; Joos, Fortunat ; Lindsay, Keith ; Menemenlis, Dimitris ; Mouchet, Anne ; Muller, Simon A. ; Sarmiento, Jorge L.
    Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
  • Preprint
    Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
    ( 2005-07-29) Orr, James C. ; Fabry, Victoria J. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Feely, Richard A. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Key, Robert M. ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Rodgers, Keith B. ; Sabine, Christopher L. ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    The surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (< 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
  • Article
    Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport
    (American Geophysical Union, 2007-02-10) Mikaloff Fletcher, Sara E. ; Gruber, Nicolas ; Jacobson, Andrew R. ; Gloor, Emanuel ; Doney, Scott C. ; Dutkiewicz, Stephanie ; Gerber, Markus ; Follows, Michael J. ; Joos, Fortunat ; Lindsay, Keith ; Menemenlis, Dimitris ; Mouchet, Anne ; Muller, Simon A. ; Sarmiento, Jorge L.
    We use an inverse method to estimate the global-scale pattern of the air-sea flux of natural CO2, i.e., the component of the CO2 flux due to the natural carbon cycle that already existed in preindustrial times, on the basis of ocean interior observations of dissolved inorganic carbon (DIC) and other tracers, from which we estimate ΔC gasex , i.e., the component of the observed DIC that is due to the gas exchange of natural CO2. We employ a suite of 10 different Ocean General Circulation Models (OGCMs) to quantify the error arising from uncertainties in the modeled transport required to link the interior ocean observations to the surface fluxes. The results from the contributing OGCMs are weighted using a model skill score based on a comparison of each model's simulated natural radiocarbon with observations. We find a pattern of air-sea flux of natural CO2 characterized by outgassing in the Southern Ocean between 44°S and 59°S, vigorous uptake at midlatitudes of both hemispheres, and strong outgassing in the tropics. In the Northern Hemisphere and the tropics, the inverse estimates generally agree closely with the natural CO2 flux results from forward simulations of coupled OGCM-biogeochemistry models undertaken as part of the second phase of the Ocean Carbon Model Intercomparison Project (OCMIP-2). The OCMIP-2 simulations find far less air-sea exchange than the inversion south of 20°S, but more recent forward OGCM studies are in better agreement with the inverse estimates in the Southern Hemisphere. The strong source and sink pattern south of 20°S was not apparent in an earlier inversion study, because the choice of region boundaries led to a partial cancellation of the sources and sinks. We show that the inversely estimated flux pattern is clearly traceable to gradients in the observed ΔC gasex , and that it is relatively insensitive to the choice of OGCM or potential biases in ΔC gasex . Our inverse estimates imply a southward interhemispheric transport of 0.31 ± 0.02 Pg C yr−1, most of which occurs in the Atlantic. This is considerably smaller than the 1 Pg C yr−1 of Northern Hemisphere uptake that has been inferred from atmospheric CO2 observations during the 1980s and 1990s, which supports the hypothesis of a Northern Hemisphere terrestrial sink.
  • Article
    Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-06-09) Orr, James C. ; Najjar, Raymond G. ; Aumont, Olivier ; Bopp, Laurent ; Bullister, John L. ; Danabasoglu, Gokhan ; Doney, Scott C. ; Dunne, John P. ; Dutay, Jean-Claude ; Graven, Heather ; Griffies, Stephen M. ; John, Jasmin G. ; Joos, Fortunat ; Levin, Ingeborg ; Lindsay, Keith ; Matear, Richard J. ; McKinley, Galen A. ; Mouchet, Anne ; Oschlies, Andreas ; Romanou, Anastasia ; Schlitzer, Reiner ; Tagliabue, Alessandro ; Tanhua, Toste ; Yool, Andrew
    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
  • Article
    Evaluation of ocean carbon cycle models with data-based metrics
    (American Geophysical Union, 2004-04-02) Matsumoto, K. ; Sarmiento, Jorge L. ; Key, Robert M. ; Aumont, Olivier ; Bullister, John L. ; Caldeira, Ken ; Campin, J.-M. ; Doney, Scott C. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Schlitzer, Reiner ; Slater, Richard D. ; Swathi, P. S. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew ; Orr, James C.
    New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
  • Article
    Evaluating global ocean carbon models : the importance of realistic physics
    (American Geophysical Union, 2004-09-15) Doney, Scott C. ; Lindsay, Keith ; Caldeira, Ken ; Campin, J.-M. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Madec, G. ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.
  • Article
    Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
    (American Geophysical Union, 2007-08-08) Najjar, Raymond G. ; Jin, X. ; Louanchi, F. ; Aumont, Olivier ; Caldeira, Ken ; Doney, Scott C. ; Dutay, J.-C. ; Follows, Michael J. ; Gruber, Nicolas ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Matsumoto, K. ; Monfray, Patrick ; Mouchet, Anne ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.