Parsons
Miles J. G.
Parsons
Miles J. G.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleSounding the call for a global library of underwater biological sounds(Frontiers Media, 2022-02-08) Parsons, Miles J. G. ; Lin, Tzu-Hao ; Mooney, T. Aran ; Erbe, Christine ; Juanes, Francis ; Lammers, Marc O. ; Li, Songhai ; Linke, Simon ; Looby, Audrey ; Nedelec, Sophie L. ; Van Opzeeland, Ilse ; Radford, Craig A. ; Rice, Aaron N. ; Sayigh, Laela S. ; Stanley, Jenni A. ; Urban, Edward ; Di Iorio, LuciaAquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.
-
ArticleGlobal inventory of species categorized by known underwater sonifery(Nature Research, 2023-12-18) Looby, Audrey ; Erbe, Christine ; Bravo, Santiago ; Cox, Kieran ; Davies, Hailey L. ; Di Iorio, Lucia ; Jezequel, Youenn ; Juanes, Francis ; Martin, Charles W. ; Mooney, T. Aran ; Radford, Craig A. ; Reynolds, Laura K. ; Rice, Aaron N. ; Riera, Amalis ; Rountree, Rodney ; Spriel, Brittnie ; Stanley, Jenni A. ; Vela, Sarah ; Parsons, Miles J. G.A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide.
-
ArticleListening forward: approaching marine biodiversity assessments using acoustic methods(The Royal Society, 2020-08-26) Mooney, T. Aran ; Di Iorio, Lucia ; Lammers, Marc O. ; Lin, Tzu-Hao ; Nedelec, Sophie L. ; Parsons, Miles J. G. ; Radford, Craig A. ; Urban, Edward ; Stanley, Jenni A.Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.