Ardiel
Evan L.
Ardiel
Evan L.
No Thumbnail Available
3 results
Search Results
Now showing
1 - 3 of 3
-
PreprintVisualizing calcium flux in freely moving nematode embryos( 2017-02) Ardiel, Evan L. ; Kumar, Abhishek ; Marbach, Joseph ; Christensen, Ryan ; Gupta, Rishi ; Duncan, William ; Daniels, Jonathan S. ; Stuurman, Nico ; Colón-Ramos, Daniel ; Shroff, HariThe lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy (LSFM) to address the challenges associated with functional imaging at this developmental stage, we recorded calcium dynamics in muscles and neurons and developed analysis strategies to relate activity and movement. In muscles, we found that the initiation of twitching was associated with a spreading calcium wave in a dorsal muscle bundle. Correlated activity in muscle bundles was linked with early twitching and eventual coordinated movement. To identify neuronal correlates of behavior, we monitored brain-wide activity with subcellular resolution and identified a particularly active cell associated with muscle contractions. Finally, imaging neurons of a well-defined adult motor circuit, we found that reversals in the eggshell correlated with calcium transients in AVA interneurons.
-
ArticleReflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy(Nature Publishing Group, 2017-11-13) Wu, Yicong ; Kumar, Abhishek ; Smith, Corey ; Ardiel, Evan L. ; Chandris, Panagiotis ; Christensen, Ryan ; Rey-Suarez, Ivan ; Guo, Min ; Vishwasrao, Harshad D. ; Chen, Jiji ; Tang, Jianyong ; Upadhyaya, Arpita ; La Riviere, Patrick J. ; Shroff, HariLight-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, and gentle imaging of live specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of four complementary views in 250 ms, doubling speed and improving information content relative to symmetric dual-view LSFM. We also report a modified deconvolution algorithm that removes associated epifluorescence contamination and fuses all views for resolution recovery. Furthermore, we enhance spatial resolution (to <300 nm in all three dimensions) by applying our method to single-view LSFM, permitting simultaneous acquisition of two high-resolution views otherwise difficult to obtain due to steric constraints at high numerical aperture. We demonstrate the broad applicability of our method in a variety of samples, studying mitochondrial, membrane, Golgi, and microtubule dynamics in cells and calcium activity in nematode embryos.
-
ArticleStereotyped behavioral maturation and rhythmic quiescence in C. elegans embryos(eLife Sciences Publications, 2022-08-05) Ardiel, Evan L. ; Lauziere, Andrew ; Xu, Stephen ; Harvey, Brandon J. ; Christensen, Ryan Patrick ; Nurrish, Stephen ; Kaplan, Joshua M. ; Shroff, HariSystematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here, we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.