Mix Alan C.

No Thumbnail Available
Last Name
First Name
Alan C.

Search Results

Now showing 1 - 6 of 6
  • Article
    Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1
    (John Wiley & Sons, 2013-11-25) Kienast, Stephanie S. ; Friedrich, Tobias ; Dubois, Nathalie ; Hill, Paul S. ; Timmermann, Axel ; Mix, Alan C. ; Kienast, Markus
    Sea surface temperatures (SST) and inorganic continental input over the last 25,000 years (25 ka) are reconstructed in the far eastern equatorial Pacific (EEP) based on three cores stretching from the equatorial front (~0.01°N, ME0005-24JC) into the cold tongue region (~3.6°S; TR163-31P and V19-30). We revisit previously published alkenone-derived SST records for these sites and present a revised chronology for V19-30. Inorganic continental input is quantified at all three sites based on 230Th-normalized fluxes of the long-lived continental isotope thorium-232 and interpreted to be largely dust. Our data show a very weak meridional (cross-equatorial) SST gradient during Heinrich Stadial 1 (HS1, 18–15 ka B.P.) and high dust input along with peak export production at and north of the equator. These findings are corroborated by an Earth system model experiment for HS1 that simulates intensified northeasterly trade winds in the EEP, stronger equatorial upwelling, and surface cooling. Furthermore, the related southward shift of the Intertropical Convergence Zone (ITCZ) during HS1 is also indicative of drier conditions in the typical source regions for dust.
  • Article
    Calibration of the carbon isotope composition (δ13C) of benthic foraminifera
    (John Wiley & Sons, 2017-06-03) Schmittner, Andreas ; Bostock, Helen ; Cartapanis, olivier ; Curry, William B. ; Filipsson, Helena L. ; Galbraith, Eric D. ; Gottschalk, Julia ; Herguera, Juan Carlos ; Hoogakker, Babette ; Jaccard, Samuel L. ; Lisiecki, Lorraine E. ; Lund, David C. ; Martínez Méndez, Gema ; Lynch-Stieglitz, Jean ; Mackensen, Andreas ; Michel, Elisabeth ; Mix, Alan C. ; Oppo, Delia W. ; Peterson, Carlye D. ; Repschläger, Janne ; Sikes, Elisabeth L. ; Spero, Howard J. ; Waelbroeck, Claire
    The carbon isotope composition (δ13C) of seawater provides valuable insight on ocean circulation, air-sea exchange, the biological pump, and the global carbon cycle and is reflected by the δ13C of foraminifera tests. Here more than 1700 δ13C observations of the benthic foraminifera genus Cibicides from late Holocene sediments (δ13CCibnat) are compiled and compared with newly updated estimates of the natural (preindustrial) water column δ13C of dissolved inorganic carbon (δ13CDICnat) as part of the international Ocean Circulation and Carbon Cycling (OC3) project. Using selection criteria based on the spatial distance between samples, we find high correlation between δ13CCibnat and δ13CDICnat, confirming earlier work. Regression analyses indicate significant carbonate ion (−2.6 ± 0.4) × 10−3‰/(μmol kg−1) [CO32−] and pressure (−4.9 ± 1.7) × 10−5‰ m−1 (depth) effects, which we use to propose a new global calibration for predicting δ13CDICnat from δ13CCibnat. This calibration is shown to remove some systematic regional biases and decrease errors compared with the one-to-one relationship (δ13CDICnat = δ13CCibnat). However, these effects and the error reductions are relatively small, which suggests that most conclusions from previous studies using a one-to-one relationship remain robust. The remaining standard error of the regression is generally σ ≅ 0.25‰, with larger values found in the southeast Atlantic and Antarctic (σ ≅ 0.4‰) and for species other than Cibicides wuellerstorfi. Discussion of species effects and possible sources of the remaining errors may aid future attempts to improve the use of the benthic δ13C record.
  • Preprint
    Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera
    ( 2009-12) Kusch, Stephanie ; Eglinton, Timothy I. ; Mix, Alan C. ; Mollenhauer, Gesine
    Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on cooccurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69- 71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.
  • Article
    Isotopic characterization of water masses in the Southeast Pacific Region: paleoceanographic implications
    (American Geophysical Union, 2021-12-23) Reyes-Macaya, Dharma ; Hoogakker, Babette ; Martínez-Méndez, Gema ; Llanillo, Pedro J. ; Grasse, Patricia ; Mohtadi, Mahyar ; Mix, Alan C. ; Leng, Melanie J. ; Struck, Ulrich ; McCorkle, Daniel C. ; Troncoso, Macarena ; Gayo, Eugenia M. ; Lange, Carina B. ; Farias, Laura ; Carhuapoma, Wilson ; Graco, Michelle ; Cornejo-D’Ottone, Marcela ; De Pol-Holz, Ricardo ; Fernandez, Camila ; Narváez, Diego ; Vargas, Cristian A. ; García-Araya, Francisco ; Hebbeln, Dierk
    In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
  • Article
    Eastern Pacific Warm Pool paleosalinity and climate variability : 0–30 kyr
    (American Geophysical Union, 2006-08-16) Benway, Heather M. ; Mix, Alan C. ; Haley, Brian A. ; Klinkhammer, Gary P.
    Multi-proxy geologic records of δ18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 ky. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as ~4 PSU occur with a dominant period of ~3-5 ky during the glacial/deglacial interval and ~1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.
  • Article
    The role of northeast pacific meltwater events in deglacial climate change
    (American Association for the Advancement of Science, 2020-02-26) Praetorius, Summer K. ; Condron, Alan ; Mix, Alan C. ; Walczak, Maureen H. ; McKay, Jennifer L. ; Du, Jianghui
    Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.