Davidson Perrin W.

No Thumbnail Available
Last Name
Davidson
First Name
Perrin W.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Dissolved gases in the deep North Atlantic track ocean ventilation processes
    (National Academy of Sciences, 2023-03-14) Seltzer, Alan M. ; Nicholson, David P. ; Smethie, William M. ; Tyne, Rebecca L. ; Le Roy, Emilie ; Stanley, Rachel H. R. ; Stute, Martin ; Barry, Peter H. ; McPaul, Katelyn ; Davidson, Perrin W. ; Chang, Bonnie X. ; Rafter, Patrick A. ; Lethaby, Paul ; Johnson, Rod J. ; Khatiwala, Samar ; Jenkins, William J.
    Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored. Here, we present high-precision noble gas isotope and elemental ratios from the deep North Atlantic (~32°N, 64°W) to evaluate gas exchange parameterizations using an ocean circulation model. The unprecedented precision of these data reveal deep-ocean undersaturation of heavy noble gases and isotopes resulting from cooling-driven air-to-sea gas transport associated with deep convection in the northern high latitudes. Our data also imply an underappreciated and large role for bubble-mediated gas exchange in the global air-sea transfer of sparingly soluble gases, including O, N, and SF. Using noble gases to validate the physical representation of air-sea gas exchange in a model also provides a unique opportunity to distinguish physical from biogeochemical signals. As a case study, we compare dissolved N/Ar measurements in the deep North Atlantic to physics-only model predictions, revealing excess N from benthic denitrification in older deep waters (below 2.9 km). These data indicate that the rate of fixed N removal in the deep Northeastern Atlantic is at least three times higher than the global deep-ocean mean, suggesting tight coupling with organic carbon export and raising potential future implications for the marine N cycle.
  • Article
    Global ocean cooling of 2.3°C during the last glacial maximum
    (American Geophysical Union, 2024-05-08) Seltzer, Alan M. ; Davidson, Perrin W. ; Shackleton, Sarah A. ; Nicholson, David P. ; Khatiwala, Samar
    Quantitative constraints on past mean ocean temperature (MOT) critically inform our historical understanding of Earth's energy balance. A recently developed MOT proxy based on paleoatmospheric Xe, Kr, and N2 ratios in ice core air bubbles is a promising tool rooted in the temperature dependences of gas solubilities. However, these inert gases are systematically undersaturated in the modern ocean interior, and it remains unclear how air-sea disequilibrium may have changed in the past. Here, we carry out 30 tracer-enabled model simulations under varying circulation, sea ice cover, and wind stress regimes to evaluate air-sea disequilibrium in the Last Glacial Maximum (LGM) ocean. We find that undersaturation of all three gases was likely reduced, primarily due to strengthened high-latitude winds, biasing reconstructed MOT by −0.38 ± 0.37°C (1σ). Accounting for air-sea disequilibrium, paleoatmospheric inert gases indicate that LGM MOT was 2.27 ± 0.46°C (1σ) colder than the pre-industrial era.