Dubois Nathalie

No Thumbnail Available
Last Name
Dubois
First Name
Nathalie
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1
    (John Wiley & Sons, 2013-11-25) Kienast, Stephanie S. ; Friedrich, Tobias ; Dubois, Nathalie ; Hill, Paul S. ; Timmermann, Axel ; Mix, Alan C. ; Kienast, Markus
    Sea surface temperatures (SST) and inorganic continental input over the last 25,000 years (25 ka) are reconstructed in the far eastern equatorial Pacific (EEP) based on three cores stretching from the equatorial front (~0.01°N, ME0005-24JC) into the cold tongue region (~3.6°S; TR163-31P and V19-30). We revisit previously published alkenone-derived SST records for these sites and present a revised chronology for V19-30. Inorganic continental input is quantified at all three sites based on 230Th-normalized fluxes of the long-lived continental isotope thorium-232 and interpreted to be largely dust. Our data show a very weak meridional (cross-equatorial) SST gradient during Heinrich Stadial 1 (HS1, 18–15 ka B.P.) and high dust input along with peak export production at and north of the equator. These findings are corroborated by an Earth system model experiment for HS1 that simulates intensified northeasterly trade winds in the EEP, stronger equatorial upwelling, and surface cooling. Furthermore, the related southward shift of the Intertropical Convergence Zone (ITCZ) during HS1 is also indicative of drier conditions in the typical source regions for dust.
  • Preprint
    Evaluating Cenozoic equatorial sediment deposition anomalies for potential paleoceanographic and Pacific plate motion applications
    ( 2013-09) Mitchell, Neil C. ; Dubois, Nathalie
    If equatorial sediments form characteristic deposits around the equator, they may help to resolve the amount of northwards drift of the Pacific tectonic plate. Relevant to this issue, it has been shown that 230Th has been accumulating on the equatorial seabed faster than its production from radioactive decay in the overlying water column during the Holocene (Marcantonio et al. in Paleoceanography 16:260–267, 2001). Some researchers have argued that this reflects the deposition of particles with adsorbed 230Th carried by bottom currents towards the equator (“focusing”). If correct, this effect may combine with high pelagic productivity, which is also centered on the equator, to yield a characteristic signature of high accumulation rates marking the paleoequator in older deposits. Here we evaluate potential evidence that such an equatorial feature existed in the geological past. Seismic reflection data from seven meridional transects suggest that a band of equatorially enhanced accumulation of restricted latitude was variably developed, both spatially and temporally. It is absent in the interval 14.25–20.1 Ma but is well developed for the interval 8.55–14.25 Ma. We also examined eolian dust accumulation rate histories generated from scientific drilling data. A dust accumulation rate anomaly near the modern equator, which is not obviously related to the inter-tropical convergence zone, is interpreted as caused by focusing. Accumulation rates of Ba and P2O5 (proxies of export production) reveal a static equatorial signature, which suggests that the movement of the Pacific plate over the period 10–25 Ma was modest. The general transition from missing to well-developed focusing signatures around 14.25 Ma in the seismic data coincides with the mid-Miocene development of the western boundary current off New Zealand. This current supplies the Pacific with deep water from Antarctica, and could therefore imply a potential paleoceanographic or paleoclimatic origin. At 10.05–14.25 Ma, the latitudes of the seismic anomalies are up to ~2° different from the paleoequator predicted by Pacific plate-hotspot models, suggesting potentially a small change in the hotspot latitudes relative to the present day (although this inference depends on the precise form of the deposition around the equator). The Ba and P2O5 anomalies, on the other hand, are broadly compatible with plate models predicting slow northward plate movement over 10–25 Ma.
  • Preprint
    Millennial-scale Atlantic/East Pacific sea surface temperature linkages during the last 100,000 years
    ( 2014-04) Dubois, Nathalie ; Kienast, Markus ; Kienast, Stephanie S. ; Timmermann, Axel
    Amplifying both internally generated variability and remote climate signals from the Atlantic Ocean via coupled air-sea instabilities, the eastern tropical Pacific (ETP) is well situated to detect past climate changes and variations in Central American wind systems that dynamically link the Atlantic and the Pacific. Here we compare new and previously published alkenone-based sea surface temperature (SST) reconstructions from diverse environments within the ETP, i.e. the Eastern Pacific Warm Pool (EPWP), the equatorial and the northern Peruvian Upwelling regions over the past 100,000 years. Over this time period, a fairly constant meridional temperature gradient across the region is observed, indicating similar hydrographic conditions during glacial and interglacial periods. The data further reveal that millennial- scale cold events associated with massive iceberg surges in the North Atlantic (Heinrich events) generate cooling in the ETP from ~8°N to ~2°S. Data from Heinrich event 1 however indicate that the response changes sign south of 2°S. These millennial-scale alterations of the SST pattern across diverse environments of the ETP support previous climate modeling experiments that suggested an Atlantic-Pacific connection caused by the intensification of the Central American gap winds, enhanced upwelling and mixing north of the equator and supported by positive air-sea feedbacks in the eastern tropical Pacific.
  • Article
    North Atlantic cooling triggered a zonal mode over the Indian Ocean during Heinrich Stadial 1
    (American Association for the Advancement of Science, 2023-01-04) Du, Xiaojing ; Russell, James M. ; Liu, Zhengyu ; Otto-Bliesner, Bette L. ; Oppo, Delia W. ; Mohtadi, Mahyar ; Zhu, Chenyu ; Galy, Valier V. ; Schefuß, Enno ; Yan, Yan ; Rosenthal, Yair ; Dubois, Nathalie ; Arbuszewski, Jennifer ; Gao, Yu
    Abrupt changes in the Atlantic meridional overturning circulation (AMOC) are thought to affect tropical hydroclimate through adjustment of the latitudinal position of the intertropical convergence zone (ITCZ). Heinrich Stadial 1 (HS1) involves the largest AMOC reduction in recent geological time; however, over the tropical Indian Ocean (IO), proxy records suggest zonal anomalies featuring intense, widespread drought in tropical East Africa versus generally wet but heterogeneous conditions in the Maritime Continent. Here, we synthesize proxy data and an isotope-enabled transient deglacial simulation and show that the southward ITCZ shift over the eastern IO during HS1 strengthens IO Walker circulation, triggering an east-west precipitation dipole across the basin. This dipole reverses the zonal precipitation anomalies caused by the exposed Sunda and Sahul shelves due to glacial lower sea level. Our study illustrates how zonal modes of atmosphere-ocean circulation can amplify or reverse global climate anomalies, highlighting their importance for future climate change.