Murata Akihiko

No Thumbnail Available
Last Name
Murata
First Name
Akihiko
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Deep ocean changes near the Western Boundary of the South Pacific Ocean
    (American Meteorological Society, 2013-10) Sloyan, Bernadette M. ; Wijffels, Susan E. ; Tilbrook, Bronte ; Katsumata, Katsuro ; Murata, Akihiko ; Macdonald, Alison M.
    Repeated occupations of two hydrographic sections in the southwest Pacific basin from the 1990s to 2000s track property changes of Antarctic Bottom Water (AABW). The largest property changes—warming, freshening, increase in total carbon, and decrease in oxygen—are found near the basin’s deep western boundary between 50° and 20°S. The magnitude of the property changes decreases with increasing distance from the western boundary. At the deep western boundary, analysis of the relative importance of AABW (γn > 28.1 kg m−3) freshening, heating, or isopycnal heave suggests that the deep ocean stratification change is the result of both warming and freshening processes. The consistent deep ocean changes near the western boundary of the southwest Pacific basin dispel the notion that the deep ocean is quiescent. High-latitude climate variability is being directly transmitted into the deep southwest Pacific basin and the global deep ocean through dynamic deep western boundary currents.
  • Article
    Pacific anthropogenic carbon between 1991 and 2017
    (American Geophysical Union, 2019-04-29) Carter, Brendan ; Feely, Richard A. ; Wanninkhof, Rik ; Kouketsu, Shinya ; Sonnerup, Rolf E. ; Pardo, Paula Conde ; Sabine, Christopher L. ; Johnson, Gregory C. ; Sloyan, Bernadette M. ; Murata, Akihiko ; Mecking, Sabine ; Tilbrook, Bronte ; Speer, Kevin G. ; Talley, Lynne D. ; Millero, Frank J. ; Wijffels, Susan E. ; Macdonald, Alison M. ; Gruber, Nicolas ; Bullister, John L.
    We estimate anthropogenic carbon (Canth) accumulation rates in the Pacific Ocean between 1991 and 2017 from 14 hydrographic sections that have been occupied two to four times over the past few decades, with most sections having been recently measured as part of the Global Ocean Ship‐based Hydrographic Investigations Program. The rate of change of Canth is estimated using a new method that combines the extended multiple linear regression method with improvements to address the challenges of analyzing multiple occupations of sections spaced irregularly in time. The Canth accumulation rate over the top 1,500 m of the Pacific increased from 8.8 (±1.1, 1σ) Pg of carbon per decade between 1995 and 2005 to 11.7 (±1.1) PgC per decade between 2005 and 2015. For the entire Pacific, about half of this decadal increase in the accumulation rate is attributable to the increase in atmospheric CO2, while in the South Pacific subtropical gyre this fraction is closer to one fifth. This suggests a substantial enhancement of the accumulation of Canth in the South Pacific by circulation variability and implies that a meaningful portion of the reinvigoration of the global CO2 sink that occurred between ~2000 and ~2010 could be driven by enhanced ocean Canth uptake and advection into this gyre. Our assessment suggests that the accuracy of Canth accumulation rate reconstructions along survey lines is limited by the accuracy of the full suite of hydrographic data and that a continuation of repeated surveys is a critical component of future carbon cycle monitoring.
  • Article
    Global Carbon Budget 2015
    (Copernicus Publications, 2015-12-07) Le Quere, Corinne ; Moriarty, Roisin ; Andrew, Robbie M. ; Canadell, Josep G. ; Sitch, Stephen ; Korsbakken, Jan Ivar ; Friedlingstein, Pierre ; Peters, Glen P. ; Andres, Robert J. ; Boden, Thomas A. ; Houghton, Richard A. ; House, Jo I. ; Keeling, Ralph F. ; Tans, Pieter P. ; Arneth, Almut ; Bakker, Dorothee C. E. ; Barbero, Leticia ; Bopp, Laurent ; Chang, J. ; Chevallier, Frédéric ; Chini, Louise Parsons ; Ciais, Philippe ; Fader, Marianela ; Feely, Richard A. ; Gkritzalis, Thanos ; Harris, Ian ; Hauck, Judith ; Ilyina, Tatiana ; Jain, Atul K. ; Kato, Etsushi ; Kitidis, Vassilis ; Klein Goldewijk, Kees ; Koven, Charles ; Landschutzer, Peter ; Lauvset, Siv K. ; Lefevre, N. ; Lenton, Andrew ; Lima, Ivan D. ; Metzl, Nicolas ; Millero, Frank J. ; Munro, David R. ; Murata, Akihiko ; Nabel, Julia E. M. S. ; Nakaoka, Shin-ichiro ; Nojiri, Yukihiro ; O'Brien, Kevin ; Olsen, Are ; Ono, Tsuneo ; Perez, Fiz F. ; Pfeil, Benjamin ; Pierrot, Denis ; Poulter, Benjamin ; Rehder, Gregor ; Rodenbeck, C. ; Saito, Shu ; Schuster, Ute ; Schwinger, Jorg ; Seferian, Roland ; Steinhoff, Tobias ; Stocker, Benjamin D. ; Sutton, Adrienne J. ; Takahashi, Taro ; Tilbrook, Bronte ; van der Laan-Luijkx, I. T. ; van der Werf, Guido R. ; van Heuven, Steven ; Vandemark, Douglas ; Viovy, Nicolas ; Wiltshire, Andrew J. ; Zaehle, Sonke ; Zeng, Ning
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).