Oliver
Hilde
Oliver
Hilde
No Thumbnail Available
Search Results
Now showing
1 - 9 of 9
-
ArticleEphemeral surface chlorophyll enhancement at the New England shelf break driven by Ekman restratification(American Geophysical Union, 2021-12-28) Oliver, Hilde ; Zhang, Weifeng G. ; Archibald, Kevin M. ; Hirzel, Andrew ; Smith, Walker O. ; Sosik, Heidi M. ; Stanley, Rachel H. R. ; McGillicuddy, Dennis J.The Mid-Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf-break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in-situ and remote sensing data, and a 2-dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf-break front in spring. Using 8-day composite satellite-measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In-situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf-break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2-dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf-break front.
-
ArticleCharacteristic depths, fluxes and timescales for Greenland’s tidewater glacier fjords from subglacial discharge‐driven upwelling during summer(American Geophysical Union, 2022-03-02) Slater, Donald A. ; Carroll, Dustin ; Oliver, Hilde ; Hopwood, Mark J. ; Straneo, Fiamma ; Wood, Michael ; Willis, Joshua K. ; Morlighem, MathieuGreenland's glacial fjords are a key bottleneck in the earth system, regulating exchange of heat, freshwater and nutrients between the ice sheet and ocean and hosting societally important fisheries. We combine recent bathymetric, atmospheric, and oceanographic data with a buoyant plume model to show that summer subglacial discharge from 136 tidewater glaciers, amounting to 0.02 Sv of freshwater, drives 0.6–1.6 Sv of upwelling. Bathymetric analysis suggests that this is sufficient to renew most major fjords within a single summer, and that these fjords provide a path to the continental shelf that is deeper than 200 m for two-thirds of the glaciers. Our study provides a first pan-Greenland inventory of tidewater glacier fjords and quantifies regional and ice sheet-wide upwelling fluxes. This analysis provides important context for site-specific studies and is a step toward implementing fjord-scale heat, freshwater and nutrient fluxes in large-scale ice sheet and climate models.
-
ArticleA regional, early spring bloom of Phaeocystis pouchetii on the New England continental shelf(American Geophysical Union, 2021-01-15) Smith, Walker O. ; Zhang, Weifeng G. ; Hirzel, Andrew ; Stanley, Rachel M. ; Meyer, Meredith G. ; Sosik, Heidi M. ; Alatalo, Philip ; Oliver, Hilde ; Sandwith, Zoe O. ; Crockford, E. Taylor ; Peacock, Emily E. ; Mehta, Arshia ; McGillicuddy, Dennis J.The genus Phaeocystis is distributed globally and has considerable ecological, biogeochemical, and societal impacts. Understanding its distribution, growth and ecological impacts has been limited by lack of extensive observations on appropriate scales. In 2018, we investigated the biological dynamics of the New England continental shelf and encountered a substantial bloom of Phaeocystis pouchetii. Based on satellite imagery during January through April, the bloom extended over broad expanses of the shelf; furthermore, our observations demonstrated that it reached high biomass levels, with maximum chlorophyll concentrations exceeding 16 µg L−1 and particulate organic carbon levels > 95 µmol L−1. Initially, the bloom was largely confined to waters with temperatures <6°C, which in turn were mostly restricted to shallow areas near the coast. As the bloom progressed, it appeared to sink into the bottom boundary layer; however, enough light and nutrients were available for growth. The bloom was highly productive (net community production integrated through the mixed layer from stations within the bloom averaged 1.16 g C m−2 d−1) and reduced nutrient concentrations considerably. Long‐term coastal observations suggest that Phaeocystis blooms occur sporadically in spring on Nantucket Shoals and presumably expand onto the continental shelf. Based on the distribution of Phaeocystis during our study, we suggest that it can have a significant impact on the overall productivity and ecology of the New England shelf during the winter/spring transition.
-
ArticleDiatom hotspots driven by western boundary current instability(American Geophysical Union, 2021-05-11) Oliver, Hilde ; Zhang, Weifeng G. ; Smith, Walker O. ; Alatalo, Philip ; Chappell, Phoebe Dreux ; Hirzel, Andrew ; Selden, Corday ; Sosik, Heidi M. ; Stanley, Rachel H. R. ; Zhu, Yifan ; McGillicuddy, Dennis J.Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems.
-
ArticleMeltwater-enhanced nutrient export from Greenland's Glacial Fjords: a sensitivity analysis(American Geophysical Union, 2020-06-22) Oliver, Hilde ; Castelao, Renato M. ; Wang, Chuning ; Yager, Patricia L.As mass loss from the Greenland Ice Sheet accelerates, this modeling study considers how meltwater inputs to the ocean can impact marine ecosystems using a simplified fjord scenario. At marine‐terminating glaciers in Greenland fjords, meltwater can be delivered far below the sea surface, both as subglacial runoff (from atmosphere‐driven surface melt) and as basal melt (from ocean heat). Such delivery can result in buoyancy‐driven upwelling and the upward entrainment of nutrient‐rich deep water, which can support phytoplankton growth in fjord surface waters. For this study, we use an idealized fjord‐scale model to investigate which properties of glaciers and fjords govern the transport of buoyantly upwelled nutrients from fjords. We model the influence of fjord geometry, hydrology, wind, tides, and phytoplankton growth within the fjord on meltwater‐driven nutrient export to the ocean. We use the Regional Ocean Modeling System (ROMS) coupled to a buoyant plume model and a biogeochemical model to simulate physical and biogeochemical processes within an idealized tidewater glacial fjord. Results show that meltwater‐driven nutrient export increases with larger subglacial discharge rates and deeper grounding lines, features that are both likely to change with continued ice sheet melting. Nutrient export decreases with longer residence times, allowing greater biological drawdown. While the absence of a coastal current in the model setup prevents the downstream advection of exported nutrients, results suggest that shelf‐forced flows could influence nutrient residence time within fjords. This simplified model highlights key uncertainties requiring further observation to understand ecological impacts of Greenland mass loss.
-
ArticleHigh resolution analysis of plankton distributions at the Middle Atlantic Bight shelf-break front(Elsevier, 2023-09-07) Hirzel, Andrew J. ; Alatalo, Philip ; Oliver, Hilde ; Petitpas, Christian M. ; Turner, Jefferson T. ; Zhang, Weifeng Gordon ; McGillicuddy, Dennis J.The Middle Atlantic Bight (MAB) is a highly productive ecosystem, supporting several economically important commercial fisheries. Chlorophyll enhancement at the MAB shelf-break front has been observed only intermittently, despite several studies suggesting persistent upwelling at the front. High resolution cross-frontal transects were conducted during three two-week cruises in April 2018, May 2019, and July 2019. Mesoplankton distributions at the front were measured with a Video Plankton Recorder equipped with hydrographic and bio-optical sensors. Zooplankton were also sampled with a Multiple Opening/Closing Net and Environment Sensing System. Each of the three cruises had distinctly different frontal characteristics, with lower variability in frontal position in April 2018 and higher variability in May and July 2019, primarily due to frontal eddies and a Gulf Stream warm core ring, respectively. Eulerian means of all transect crossings within each cruise did not show mean frontal chlorophyll enhancement in April 2018 or July 2019, despite individual crossings showing chlorophyll enhancement in April 2018. Transformation of the April 2018 data into a cross-frontal coordinate system revealed a weak enhancement of chlorophyll and copepods at the front. Mean frontal chlorophyll enhancement was observed in May and was associated with enhancement in the periphery of a frontal eddy rather than the front itself. None of the planktonic categories observed were enhanced at the front in the cross-shelf mean distribution, though diatom chains and copepods were more abundant inshore of the front, particularly in May and July 2019, as well as within the center of a frontal eddy in May. The high variability of the MAB frontal region obscured the impact of ephemeral frontal enhancement in mean observations of April 2018, while frontal eddies contributed to chlorophyll enhancement in mean observations of May 2019. The influence of both argues for the necessity for 3-D models rather than idealized 2-D models to explain frontal behavior and its effects on biological responses.
-
ArticleEnvironmental drivers of coccolithophore growth in the Pacific Sector of the Southern Ocean(American Geophysical Union, 2023-11-09) Oliver, Hilde ; McGillicuddy, Dennis J. ; Krumhardt, Kristen M. ; Long, Matthew C. ; Bates, Nicholas R. ; Bowler, Bruce C. ; Drapeau, David T. ; Balch, William M.The Great Calcite Belt (GCB) is a band of high concentrations of suspended particulate inorganic carbon (PIC) spanning the subantarctic Southern Ocean and plays an important role in the global carbon cycle. The key limiting factors controlling coccolithophore growth supporting this high PIC have not yet been well-characterized in the remote Pacific sector, the lowest PIC but largest area of the GCB. Here, we present in situ physical and biogeochemical measurements along 150°W from January to February 2021, where a coccolithophore bloom occurred. In both months, PIC was elevated in the Subantarctic Zone (SAZ), where nitrate was >1 μM and temperatures were ∼13°C in January and ∼14°C in February, consistent with conditions previously associated with optimal coccolithophore growth potential. The highest PIC was associated with a relatively narrow temperature range that increased about 1°C between occupations. A fresher water mass had been transported to the 150°W meridian between occupations, and altimetry-informed Lagrangian backtracking estimates show that most of this water was likely transported from the southeast within the SAZ. Applying the observations in a coccolithophore growth model for both January and February, we show that the ∼1.7°C increase in temperature can explain the rise in PIC between occupations.
-
ArticleSatellite-derived Lagrangian transport pathways in the Labrador Sea(MDPI, 2023-11-28) Castelao, Renato M. ; Oliver, Hilde ; Medeiros, Patricia M.The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea.
-
ArticleGreenland Subglacial Discharge as a driver of hotspots of increasing coastal chlorophyll since the early 2000s(American Geophysical Union, 2023-05-18) Oliver, Hilde ; Slater, Donald ; Carroll, Dustin ; Wood, Michael ; Morlighem, Mathieu ; Hopwood, Mark J.Subglacial discharge emerging from the base of Greenland's marine‐terminating glaciers drives upwelling of nutrient‐rich bottom waters to the euphotic zone, which can fuel nitrate‐limited phytoplankton growth. Here, we use buoyant plume theory to quantify this subglacial discharge‐driven nutrient supply on a pan‐Greenland scale. The modeled nitrate fluxes were concentrated in a few critical systems, with half of the total modeled nitrate flux anomaly occurring at just 14% of marine‐terminating glaciers. Increasing subglacial discharge fluxes results in elevated nitrate fluxes, with the largest flux occurring at Jakobshavn Isbræ in Disko Bay, where subglacial discharge is largest. Subglacial discharge and nitrate flux anomaly also account for significant temporal variability in summer satellite chlorophyll a (Chl) within 50 km of Greenland's coast, particularly in some regions in central west and northwest Greenland.Runoff and modeled nitrate upwelling can explain temporal variability in surface cholorophyll in some coastal areas in west Greenland