Bothner Michael H.

No Thumbnail Available
Last Name
First Name
Michael H.

Search Results

Now showing 1 - 11 of 11
  • Article
    Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America
    (American Geophysical Union, 2010-09-22) Engle, Mark A. ; Tate, Michael T. ; Krabbenhoft, David P. ; Schauer, James J. ; Kolker, Allan ; Shanley, James B. ; Bothner, Michael H.
    This study presents >5 cumulative years of tropospheric mercury (Hg) speciation measurements, over the period of 2003–2009, for eight sites in the central and eastern United States and one site in coastal Puerto Rico. The purpose of this research was to identify local and regional processes that impact Hg speciation and deposition (wet + dry) across a large swath of North America. Sites sampled were selected to represent both a wide range of mercury exposure and environmental conditions. Seasonal mean concentrations of elemental Hg (1.27 ± 0.31 to 2.94 ± 1.57 ng m−3; inline equation ± σ), reactive gaseous mercury (RGM; 1.5 ± 1.6 to 63.3 ± 529 pg m−3), and fine particulate Hg (1.2 ± 1.4 to 37.9 ± 492 pg m−3) were greatest at sites impacted by Hg point sources. Diel bin plots of Hgo and RGM suggest control by a variety of local/regional processes including impacts from Hg point sources and boundary layer/free tropospheric interactions as well as from larger-scale processes affecting Hg speciation (i.e., input of the global Hg pool, RGM formed from oxidation of Hgo by photochemical compounds at coastal sites, and elemental Hg depletion during periods of dew formation). Comparison of wet Hg deposition (measured), RGM and fine particulate Hg dry deposition (calculated using a multiple resistance model), and anthropogenic point source emissions varied significantly between sites. Significant correlation between emission sources and dry deposition was observed but was highly dependant upon inclusion of data from two sites with exceptionally high deposition. Findings from this study highlight the importance of environmental setting on atmospheric Hg cycling and deposition rates.
  • Article
    The use (and misuse) of sediment traps in coral reef environments : theory, observations, and suggested protocols
    (Springer, 2010-12-17) Storlazzi, Curt D. ; Field, Michael E. ; Bothner, Michael H.
    Sediment traps are commonly used as standard tools for monitoring “sedimentation” in coral reef environments. In much of the literature where sediment traps were used to measure the effects of “sedimentation” on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about “sedimentation” on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height (H), trap mouth diameter (D), the height of the trap mouth above the substrate (z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.
  • Preprint
    Bioturbation depths, rates and processes in Massachusetts Bay sediments inferred from modeling of 210Pb and 239 + 240Pu profiles
    ( 2004-07-20) Crusius, John ; Bothner, Michael H. ; Sommerfield, Christopher K.
    Profiles of 210Pb and 239+240Pu from sediment cores collected throughout Massachusetts Bay (water depths of 36-192 m) are interpreted with the aid of a numerical sedimentmixing model to infer bioturbation depths, rates and processes. The nuclide data suggest extensive bioturbation to depths of 25-35 cm. Roughly half the cores have 210Pb and 239+240Pu profiles that decrease monotonically from the surface and are consistent with biodiffusive mixing. Bioturbation rates are reasonably well constrained by these profiles and vary from ~0.7 to ~40 cm2 yr-1. As a result of this extensive reworking, however, sediment ages cannot be accurately determined from these radionuclides and only upper limits on sedimentation rates (of ~0.3 cm yr-1) can be inferred. The other half of the radionuclide profiles are characterized by subsurface maxima in each nuclide, which cannot be reproduced by biodiffusive mixing models. A numerical model is used to demonstrate that mixing caused by organisms that feed at the sediment surface and defecate below the surface can cause the subsurface maxima, as suggested by previous work. The deep penetration depths of excess 210Pb and 239+240Pu suggest either that the organisms release material over a range of >15 cm depth or that biodiffusive mixing mediated by other organisms is occurring at depth. Additional constraints from surficial sediment 234Th data suggest that in this half of the cores, the vast majority of the presentday flux of recent, nuclide-bearing material to these core sites is transported over a timescale of a month or more to a depth of a few cm below the sediment surface. As a consequence of the complex mixing processes, surface sediments include material spanning a range of ages and will not accurately record recent changes in contaminant deposition.
  • Article
    Sedimentation processes in a coral reef embayment : Hanalei Bay, Kauai
    (Elsevier B.V., 2009-06-08) Storlazzi, Curt D. ; Field, Michael E. ; Bothner, Michael H. ; Presto, M. K. ; Draut, Amy E.
    Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.
  • Preprint
    Mercury flux to sediments of Lake Tahoe, California-Nevada
    ( 2009-08-12) Drevnick, Paul E. ; Shinneman, Avery L. C. ; Lamborg, Carl H. ; Engstrom, Daniel R. ; Bothner, Michael H. ; Oris, James T.
    We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.
  • Article
    Wave- and tidally-driven flow and sediment flux across a fringing coral reef : southern Molokai, Hawaii
    (Elsevier B.V., 2004-07-08) Storlazzi, Curt D. ; Ogston, Andrea S. ; Bothner, Michael H. ; Field, Michael E. ; Presto, M. K.
    The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1 m) and its advection across the reef crest and onto the deeper fore reef. The time–series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.
  • Article
    Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii
    (Elsevier B.V., 2006-03-20) Bothner, Michael H. ; Reynolds, Richard L. ; Casso, Michael A. ; Storlazzi, Curt D. ; Field, Michael E.
    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
  • Preprint
    Mercury sources to Lake Ozette and Lake Dickey : highly contaminated remote coastal lakes, Washington State, USA
    ( 2009-08) Furl, Chad Van ; Colman, John A. ; Bothner, Michael H.
    Mercury concentrations in largemouth bass and mercury accumulation rates in age-dated sediment cores were examined at Lake Ozette and Lake Dickey in Washington State. Goals of the study were to compare concentrations in fish tissues at the two lakes with lakes in a larger statewide dataset and evaluate factors influencing lake loading at Ozette and Dickey, which may include: catchment disturbances, coastal mercury cycling, and the role of trans-Pacific Asian mercury. Mercury fish tissue concentrations at the lakes were among the highest recorded in Washington State. Wet deposition and historical atmospheric monitoring from the area show no indication of enhanced deposition from Asian sources or coastal atmospheric processes. Sediment core records from the lakes displayed rapidly increasing sedimentation rates coinciding with commercial logging. The unusually high mercury flux rates and mercury tissue concentrations recorded at Lake Ozette and Lake Dickey appear to be associated with logging within the catchments.
  • Article
    Atmospheric mercury and fine particulate matter in coastal New England : implications for mercury and trace element sources in the northeastern United States
    (Elsevier B.V., 2013-08-29) Kolker, Allan ; Engle, Mark A. ; Peucker-Ehrenbrink, Bernhard ; Geboy, Nicholas J. ; Krabbenhoft, David P. ; Bothner, Michael H. ; Tate, Michael T.
    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.
  • Article
    Sources of land-derived runoff to a coral reef-fringed embayment identified using geochemical tracers in nearshore sediment traps
    (Elsevier B.V., 2009-09-24) Takesue, Renee K. ; Bothner, Michael H. ; Reynolds, Richard L.
    Geochemical tracers, including Ba, Co, Th, 7Be, 137Cs and 210Pb, and magnetic properties were used to characterize terrestrial runoff collected in nearshore time-series sediment traps in Hanalei Bay, Kauai, during flood and dry conditions in summer 2006, and to fingerprint possible runoff sources in the lower watershed. In combination, the tracers indicate that runoff during a flood in August could have come from cultivated taro fields bordering the lower reach of the river. Land-based runoff associated with summer floods may have a greater impact on coral reef communities in Hanalei Bay than in winter because sediment persists for several months. During dry periods, sediment carried by the Hanalei River appears to have been mobilized primarily by undercutting of low 7Be, low 137Cs riverbanks composed of soil weathered from tholeiitic basalt with low Ba and Co concentrations. Following a moderate rainfall event in September, high 7Be sediment carried by the Hanalei River was probably mobilized by overland flow in the upper watershed. Ba-desorption in low-salinity coastal water limited its use to a qualitative runoff tracer in nearshore sediment. 210Pb had limited usefulness as a terrestrial tracer in the nearshore due to a large dissolved oceanic source and scavenging onto resuspended bottom sediment. 210Pb-scavenging does, however, illustrate the role resuspension could play in the accumulation of particle-reactive contaminants in nearshore sediment. Co and 137Cs were not affected by desorption or geochemical scavenging and showed the greatest potential as quantitative sediment provenance indicators in material collected in nearshore sediment traps.
  • Preprint
    Insights on geochemical cycling of U, Re and Mo from seasonal sampling in Boston Harbor, Massachusetts, USA
    ( 2006-10-23) Morford, Jennifer L. ; Martin, William R. ; Kalnejais, Linda H. ; Francois, Roger ; Bothner, Michael H. ; Karle, Ida-Maja
    This study examined the removal of U, Mo, and Re from seawater by sedimentary processes at a shallow-water site with near-saturation bottom water O2 levels (240-380 μmol O2/L), very high organic matter oxidation rates (annually averaged rate is 870 μmol C/cm2/y), and shallow oxygen penetration depths (4 mm or less throughout the year). Under these conditions, U, Mo, and Re were removed rapidly to asymptotic pore water concentrations of 2.2–3.3 nmol/kg (U), 7–13 nmol/kg (Mo), and 11–14 pmol/kg (Re). The order in which the three metals were removed, determined by fitting a diffusion-reaction model to measured profiles, was Re < U < Mo. Model fits also suggest that the Mo profiles clearly showed the presence of a near-interface layer in which Mo was added to pore waters by remineralization of a solid phase. The importance of this solid phase source of pore water Mo increased from January to October as the organic matter oxidation rate increased, bottom water O2 decreased, and the O2 penetration depth decreased. Experiments with in situ benthic flux chambers generally showed fluxes of U and Mo into the sediments. However, when the overlying water O2 concentration in the chambers was allowed to drop to very low levels, Mn and Fe were released to the overlying water along with the simultaneous release of Mo and U. These experiments suggest that remineralization of Mn and/or Fe oxides may be a source of Mo and perhaps U to pore waters, and may complicate the accumulation of U and Mo in bioturbated sediments with high organic matter oxidation rates and shallow O2 penetration depths. Benthic chamber experiments including the nonreactive solute tracer, Br-, indicated that sediment irrigation was very important to solute exchange at the study site. The enhancement of sediment-seawater exchange due to irrigation was determined for the nonreactive tracer (Br-), TCO2, NH4 +, U and Mo. The comparisons between these solutes showed that reactions within and around the burrows were very important for modulating the Mo flux, but less important for U. The effect of these reactions on Mo exchange was highly variable, enhancing Mo (and, to a lesser extent, U) uptake at times of relatively modest irrigation, but inhibiting exchange when irrigation rates were faster. These results reinforce the observation that Mo can be released to and removed from pore waters via sedimentary reactions. The removal rate of U and Mo from seawater by sedimentary reactions was found to agree with the rate of accumulation of authigenic U and Mo in the solid phase. The fluxes of U and Mo determined by in situ benthic flux chamber measurements were the largest that have been measured to date. These results confirm that removal of redoxsensitive metals from continental margin sediments underlying oxic bottom water is important, and suggest that continental margin sediments play a key role in the marine budgets of these metals.