von Dassow Peter

No Thumbnail Available
Last Name
von Dassow
First Name
Peter
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Strength in numbers : collaborative science for new experimental model systems
    (Public Library of Science, 2018-07-02) Waller, Ross F. ; Cleves, Phillip A. ; Rubio-Brotons, Maria ; Woods, April ; Bender, Sara J. ; Edgcomb, Virginia P. ; Gann, Eric R. ; Jones, Adam C. ; Teytelman, Leonid ; von Dassow, Peter ; Wilhelm, Steven W. ; Collier, Jackie L.
    Our current understanding of biology is heavily based on a small number of genetically tractable model organisms. Most eukaryotic phyla lack such experimental models, and this limits our ability to explore the molecular mechanisms that ultimately define their biology, ecology, and diversity. In particular, marine protists suffer from a paucity of model organisms despite playing critical roles in global nutrient cycles, food webs, and climate. To address this deficit, an initiative was launched in 2015 to foster the development of ecologically and taxonomically diverse marine protist genetic models. The development of new models faces many barriers, some technical and others institutional, and this often discourages the risky, long-term effort that may be required. To lower these barriers and tackle the complexity of this effort, a highly collaborative community-based approach was taken. Herein, we describe this approach, the advances achieved, and the lessons learned by participants in this novel community-based model for research.
  • Article
    Genetic tool development in marine protists: emerging model organisms for experimental cell biology
    (Nature Research, 2020-04-06) Faktorová, Drahomíra ; Nisbet, R. Ellen R. ; Fernández Robledo, José A. ; Casacuberta, Elena ; Sudek, Lisa ; Allen, Andrew E. ; Ares, Manuel, Jr. ; Aresté, Cristina ; Balestreri, Cecilia ; Barbrook, Adrian C. ; Beardslee, Patrick ; Bender, Sara J. ; Booth, David S. ; Bouget, François-Yves ; Bowler, Chris ; Breglia, Susana A. ; Brownlee, Colin ; Burger, Gertraud ; Cerutti, Heriberto ; Cesaroni, Rachele ; Chiurillo, Miguel A. ; Clemente, Thomas ; Coles, Duncan B. ; Collier, Jackie L. ; Cooney, Elizabeth C. ; Coyne, Kathryn J. ; Docampo, Roberto ; Dupont, Christopher L. ; Edgcomb, Virginia P. ; Einarsso, Elin ; Elustondo, Pía A. ; Federici, Fernan ; Freire-Beneitez, Veronica ; Freyria, Nastasia J. ; Fukuda, Kodai ; García, Paulo A. ; Girguis, Peter R. ; Gomaa, Fatma ; Gornik, Sebastian G. ; Guo, Jian ; Hampl, Vladimír ; Hanawa, Yutaka ; Haro-Contreras, Esteban R. ; Hehenberger, Elisabeth ; Highfield, Andrea ; Hirakawa, Yoshihisa ; Hopes, Amanda ; Howe, Christopher J. ; Hu, Ian ; Ibañez, Jorge ; Irwin, Nicholas A. T. ; Ishii, Yuu ; Janowicz, Natalia Ewa ; Jones, Adam C. ; Kachale, Ambar ; Fujimura-Kamada, Konomi ; Kaur, Binnypreet ; Kaye, Jonathan Z. ; Kazana, Eleanna ; Keeling, Patrick J. ; King, Nicole ; Klobutcher, Lawrence A. ; Lander, Noelia ; Lassadi, Imen ; Li, Zhuhong ; Lin, Senjie ; Lozano, Jean-Claude ; Luan, Fulei ; Maruyama, Shinichiro ; Matute, Tamara ; Miceli, Cristina ; Minagawa, Jun ; Moosburner, Mark ; Najle, Sebastián R. ; Nanjappa, Deepak ; Nimmo, Isabel C. ; Noble, Luke ; Novák Vanclová, Anna M. G. ; Nowacki, Mariusz ; Nuñez, Isaac ; Pain, Arnab ; Piersanti, Angela ; Pucciarelli, Sandra ; Pyrih, Jan ; Rest, Joshua S. ; Rius, Mariana ; Robertson, Deborah ; Ruaud, Albane ; Ruiz-Trillo, Iñaki ; Sigg, Monika A. ; Silver, Pamela A. ; Slamovits, Claudio H. ; Smith, G. Jason ; Sprecher, Brittany N. ; Stern, Rowena ; Swart, Estienne C. ; Tsaousis, Anastasios D. ; Tsypin, Lev ; Turkewitz, Aaron ; Turnšek, Jernej ; Valach, Matus ; Vergé, Valérie ; von Dassow, Peter ; von der Haar, Tobias ; Waller, Ross F. ; Wang, Lu ; Wen, Xiaoxue ; Wheeler, Glen L. ; Woods, April ; Zhang, Huan ; Mock, Thomas ; Worden, Alexandra Z. ; Lukes, Julius
    Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
  • Article
    Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton
    (Nature Publishing Group, 2014-12-02) von Dassow, Peter ; John, Uwe ; Ogata, Hiroyuki ; Probert, Ian ; Bendif, El Mahdi ; Kege, Jessica U. ; Audic, Stephane ; Wincker, Patrick ; Da Silva, Corinne ; Claverie, Jean-Michel ; Doney, Scott C. ; Glover, David M. ; Flores, Daniella Mella ; Herrera, Yeritza ; Lescot, Magali ; Garet-Delmas, Marie-Jose ; de Vargas, Colomban
    Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.
  • Article
    Pan genome of the phytoplankton Emiliania underpins its global distribution
    (Nature Publishing Group, 2013-07-10) Read, Betsy A. ; Kegel, Jessica ; Klute, Mary J. ; Kuo, Alan J. ; Lefebvre, Stephane C. ; Maumus, Florian ; Mayer, Christoph ; Miller, John ; Monier, Adam ; Salamov, Asaf ; Young, Jeremy ; Aguilar, Maria ; Claverie, Jean-Michel ; Frickenhaus, Stephan ; Gonzalez, Karina ; Herman, Emily K. ; Lin, Yao-Cheng ; Napier, Johnathan ; Ogata, Hiroyuki ; Sarno, Analissa F. ; Shmutz, Jeremy ; Schroeder, Declan C. ; de Vargas, Colomban ; Verret, Frederic ; von Dassow, Peter ; Valentin, Klaus ; Van de Peer, Yves ; Wheeler, Glen L. ; Emiliania huxleyi Annotation Consortium ; Dacks, Joel B. ; Delwiche, Charles F. ; Dyhrman, Sonya T. ; Glockne, Gernot ; Joh, Uwe ; Richards, Thomas ; Worden, Alexandra Z. ; Zhang, Xiaoyu ; Grigoriev, Igor V.
    Coccolithophores have influenced the global climate for over 200 million years1. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems2. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space3. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean4. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.