Meyer Folker

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 6 of 6
  • Article
    Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans
    (American Society for Microbiology, 2007-12-07) Sievert, Stefan M. ; Scott, Kathleen M. ; Klotz, Martin G. ; Chain, Patrick S. G. ; Hauser, Loren J. ; Hemp, James ; Hugler, Michael ; Land, Miriam L. ; Lapidus, Alla ; Larimer, Frank W. ; Lucas, Susan ; Malfatti, Stephanie A. ; Meyer, Folker ; Paulsen, Ian T. ; Ren, Qinghu ; Simon, Jörg ; USF Genomics Class
    Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.
  • Article
    Genomic Standards Consortium projects
    (Genomic Standards Consortium, 2014) Field, Dawn ; Sterk, Peter ; Kottmann, Renzo ; De Smet, Wim ; Amaral-Zettler, Linda A. ; Cochrane, Guy R. ; James, Cole R. ; Davies, Neil ; Dawyndt, Peter ; Garrity, George M. ; Gilbert, Jack A. ; Glockner, Frank Oliver ; Hirschman, Lynette ; Klenk, Hans-Peter ; Knight, Rob ; Kyrpides, Nikos C. ; Meyer, Folker ; Karsch-Mizrachi, Ilene ; Morrison, Norman ; Robbins, Robert J. ; San Gil, Inigo ; Sansone, Susanna-Assunta ; Schriml, Lynn M. ; Tatusova, Tatiana ; Ussery, David W. ; Yilmaz, Pelin ; White, Owen ; Wooley, John ; Caporaso, J. Gregory
    The Genomic Standards Consortium (GSC) is an open-membership community working towards the development, implementation and harmonization of standards in the field of genomics. The mission of the GSC is to improve digital descriptions of genomes, metagenomes and gene marker sequences. The GSC started in late 2005 with the defined task of establishing what is now termed the “Minimum Information about any Sequence” (MIxS) standard [1,2]. As an outgrowth of the activities surrounding the creation and implementation of the MixS standard there are now 18 projects within the GSC [3]. These efforts cover an ever widening range of standardization activities. Given the growth of projects and to promote transparency, participation and adoption the GSC has developed a “GSC Project Description Template”. A complete set of GSC Project Descriptions and the template are available on the GSC website. The GSC has an open policy of participation and continues to welcome new efforts. Any projects that facilitate the standard descriptions and exchange of data are potential candidates for inclusion under the GSC umbrella. Areas that expand the scope of the GSC are encouraged. Through these collective activities we hope to help foster the growth of the ‘bioinformatics standards’ community. For more information on the GSC and its range of projects, please see
  • Article
    MIxS-BE : a MIxS extension defining a minimum information standard for sequence data from the built environment
    (Nature Publishing Group, 2013-10-24) Glass, Elizabeth M. ; Dribinsky, Yekaterina ; Yilmaz, Pelin ; Levin, Hal ; Van Pelt, Robert ; Wendel, Doug ; Wilke, Andreas ; Eisen, Jonathan A. ; Huse, Susan M. ; Shipanova, Anna ; Sogin, Mitchell L. ; Stajich, Jason ; Knight, Rob ; Meyer, Folker ; Schriml, Lynn M.
    The need for metadata standards for microbe sampling in the built environment.
  • Article
    The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2
    (Public Library of Science (PLoS), 2006-11-14) Scott, Kathleen M. ; Sievert, Stefan M. ; Abril, Fereniki N. ; Ball, Lois A. ; Barrett, Chantell J. ; Blake, Rodrigo A. ; Boller, Amanda J. ; Chain, Patrick S. G. ; Clark, Justine A. ; Davis, Carisa R. ; Detter, Chris ; Do, Kimberly F. ; Dobrinski, Kimberly P. ; Faza, Brandon I. ; Fitzpatrick, Kelly A. ; Freyermuth, Sharyn K. ; Harmer, Tara L. ; Hauser, Loren J. ; Hugler, Michael ; Kerfeld, Cheryl A. ; Klotz, Martin G. ; Kong, William W. ; Land, Miriam L. ; Lapidus, Alla ; Larimer, Frank W. ; Longo, Dana L. ; Lucas, Susan ; Malfatti, Stephanie A. ; Massey, Steven E. ; Martin, Darlene D. ; McCuddin, Zoe ; Meyer, Folker ; Moore, Jessica L. ; Ocampo, Luis H. ; Paul, John H. ; Paulsen, Ian T. ; Reep, Douglas K. ; Ren, Qinghu ; Ross, Rachel L. ; Sato, Priscila Y. ; Thomas, Phaedra ; Tinkham, Lance E. ; Zeruth, Gary T.
    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.
  • Article
    The Genomic Standards Consortium
    (Public Library of Science, 2011-06-21) Field, Dawn ; Amaral-Zettler, Linda A. ; Cochrane, Guy R. ; Cole, James R. ; Dawyndt, Peter ; Garrity, George M. ; Gilbert, Jack A. ; Glockner, Frank Oliver ; Hirschman, Lynette ; Karsch-Mizrachi, Ilene ; Klenk, Hans-Peter ; Knight, Rob ; Kottmann, Renzo ; Kyrpides, Nikos C. ; Meyer, Folker ; San Gil, Inigo ; Sansone, Susanna-Assunta ; Schriml, Lynn M. ; Sterk, Peter ; Tatusova, Tatiana ; Ussery, David W. ; White, Owen ; Wooley, John
    A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC), an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences.
  • Preprint
    Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications
    ( 2011-01-04) Yilmaz, Pelin ; Kottmann, Renzo ; Field, Dawn ; Knight, Rob ; Cole, James R. ; Amaral-Zettler, Linda A. ; Gilbert, Jack A. ; Karsch-Mizrachi, Ilene ; Johnston, Anjanette ; Cochrane, Guy R. ; Vaughan, Robert ; Hunter, Christopher ; Park, Joonhong ; Morrison, Norman ; Rocca-Serra, Philippe ; Sterk, Peter ; Arumugam, Manimozhiyan ; Bailey, Mark ; Baumgartner, Laura ; Birren, Bruce W. ; Blaser, Martin J. ; Bonazzi, Vivien ; Booth, Tim ; Bork, Peer ; Bushman, Frederic D. ; Buttigieg, Pier Luigi ; Chain, Patrick S. G. ; Charlson, Emily ; Costello, Elizabeth K. ; Huot-Creasy, Heather ; Dawyndt, Peter ; DeSantis, Todd ; Fierer, Noah ; Fuhrman, Jed A. ; Gallery, Rachel E. ; Gevers, Dirk ; Gibbs, Richard A. ; San Gil, Inigo ; Gonzalez, Antonio ; Gordon, Jeffrey I. ; Guralnick, Robert P. ; Hankeln, Wolfgang ; Highlander, Sarah ; Hugenholtz, Philip ; Jansson, Janet K. ; Kau, Andrew L. ; Kelley, Scott T. ; Kennedy, Jerry ; Knights, Dan ; Koren, Omry ; Kuczynski, Justin ; Kyrpides, Nikos C. ; Larsen, Robert ; Lauber, Christian L. ; Legg, Teresa ; Ley, Ruth E. ; Lozupone, Catherine A. ; Ludwig, Wolfgang ; Lyons, Donna ; Maguire, Eamonn ; Methe, Barbara A. ; Meyer, Folker ; Muegge, Brian ; Nakielny, Sara ; Nelson, Karen E. ; Nemergut, Diana ; Neufeld, Josh D. ; Newbold, Lindsay K. ; Oliver, Anna E. ; Pace, Norman R. ; Palanisamy, Giriprakash ; Peplies, Jorg ; Petrosino, Joseph ; Proctor, Lita ; Pruesse, Elmar ; Quast, Christian ; Raes, Jeroen ; Ratnasingham, Sujeevan ; Ravel, Jacques ; Relman, David A. ; Assunta-Sansone, Susanna ; Schloss, Patrick D. ; Schriml, Lynn M. ; Sinha, Rohini ; Smith, Michelle I. ; Sodergren, Erica ; Spor, Ayme ; Stombaugh, Jesse ; Tiedje, James M. ; Ward, Doyle V. ; Weinstock, George M. ; Wendel, Doug ; White, Owen ; Whiteley, Andrew ; Wilke, Andreas ; Wortman, Jennifer R. ; Yatsunenko, Tanya ; Glockner, Frank Oliver
    Here we present a standard developed by the Genomic Standards Consortium (GSC) to describe marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The “environmental packages” apply to any sequence whose origin is known and can therefore be used in combination with MIMARKS or other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we establish the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity across the Tree of Life as it is currently being documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.