Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans

Thumbnail Image
Sievert, Stefan M.
Scott, Kathleen M.
Klotz, Martin G.
Chain, Patrick S. G.
Hauser, Loren J.
Hemp, James
Hugler, Michael
Land, Miriam L.
Lapidus, Alla
Larimer, Frank W.
Lucas, Susan
Malfatti, Stephanie A.
Meyer, Folker
Paulsen, Ian T.
Ren, Qinghu
Simon, Jörg
USF Genomics Class
Alternative Title
Date Created
Related Materials
Replaced By
Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.
Author Posting. © American Society for Microbiology, 2008. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 74 (2008): 1145-1156, doi:10.1128/AEM.01844-07.
Embargo Date
Applied and Environmental Microbiology 74 (2008): 1145-1156
Cruise ID
Cruise DOI
Vessel Name