Haëntjens Nils

No Thumbnail Available
Last Name
Haëntjens
First Name
Nils
ORCID
0000-0002-7155-2721

Search Results

Now showing 1 - 5 of 5
  • Article
    Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016-2018)
    (Frontiers Media, 2019-12-11) Gorsky, Gabriel ; Bourdin, Guillaume ; Lombard, Fabien ; Pedrotti, Maria Luiza ; Audrain, Samuel ; Bin, Nicolas ; Boss, Emmanuel S. ; Bowler, Chris ; Cassar, Nicolas ; Caudan, Loic ; Chabot, Genevieve ; Cohen, Natalie R. ; Cron, Daniel ; De Vargas, Colomban ; Dolan, John R. ; Douville, Eric ; Elineau, Amanda ; Flores, J. Michel ; Ghiglione, Jean-Francois ; Haëntjens, Nils ; Hertau, Martin ; John, Seth G. ; Kelly, Rachel L. ; Koren, Ilan ; Lin, Yajuan ; Marie, Dominique ; Moulin, Clémentine ; Moucherie, Yohann ; Pesant, Stephane ; Picheral, Marc ; Poulain, Julie ; Pujo-Pay, Mireille ; Reverdin, Gilles ; Romac, Sarah ; Sullivan, Mathew B. ; Trainic, Miri ; Tressol, Marc ; Troublé, Romain ; Vardi, Assaf ; Voolstra, Christian R. ; Wincker, Patrick ; Agostini, Sylvain ; Banaigs, Bernard ; Boissin, Emilie ; Forcioli, Didier ; Furla, Paola ; Galand, Pierre E. ; Gilson, Eric ; Reynaud, Stephanie ; Sunagawa, Shinichi ; Thomas, Olivier P. ; Vega Thurber, Rebecca ; Zoccola, Didier ; Planes, Serge ; Allemand, Denis ; Karsenti, Eric
    Interactions between the ocean and the atmosphere occur at the air-sea interface through the transfer of momentum, heat, gases and particulate matter, and through the impact of the upper-ocean biology on the composition and radiative properties of this boundary layer. The Tara Pacific expedition, launched in May 2016 aboard the schooner Tara, was a 29-month exploration with the dual goals to study the ecology of reef ecosystems along ecological gradients in the Pacific Ocean and to assess inter-island and open ocean surface plankton and neuston community structures. In addition, key atmospheric properties were measured to study links between the two boundary layer properties. A major challenge for the open ocean sampling was the lack of ship-time available for work at “stations”. The time constraint led us to develop new underway sampling approaches to optimize physical, chemical, optical, and genomic methods to capture the entire community structure of the surface layers, from viruses to metazoans in their oceanographic and atmospheric physicochemical context. An international scientific consortium was put together to analyze the samples, generate data, and develop datasets in coherence with the existing Tara Oceans database. Beyond adapting the extensive Tara Oceans sampling protocols for high-resolution underway sampling, the key novelties compared to Tara Oceans’ global assessment of plankton include the measurement of (i) surface plankton and neuston biogeography and functional diversity; (ii) bioactive trace metals distribution at the ocean surface and metal-dependent ecosystem structures; (iii) marine aerosols, including biological entities; (iv) geography, nature and colonization of microplastic; and (v) high-resolution underway assessment of net community production via equilibrator inlet mass spectrometry. We are committed to share the data collected during this expedition, making it an important resource important resource to address a variety of scientific questions.
  • Article
    Plankton imagery data inform satellite-based estimates of diatom carbon
    (American Geophysical Union, 2022-06-18) Chase, Alison P. ; Boss, Emmanuel S. ; Haëntjens, Nils ; Culhane, Emmett ; Roesler, Collin S. ; Karp-Boss, Lee
    Estimating the biomass of phytoplankton communities via remote sensing is a key requirement for understanding global ocean ecosystems. Of particular interest is the carbon associated with diatoms given their unequivocal ecological and biogeochemical roles. Satellite-based algorithms often rely on accessory pigment proxies to define diatom biomass, despite a lack of validation against independent diatom biomass measurements. We used imaging-in-flow cytometry to quantify diatom carbon in the western North Atlantic, and compared results to those obtained from accessory pigment-based approximations. Based on this analysis, we offer a new empirical formula to estimate diatom carbon concentrations from chlorophyll a. Additionally, we developed a neural network model in which we integrated chlorophyll a and environmental information to estimate diatom carbon distributions in the western North Atlantic. The potential for improving satellite-based diatom carbon estimates by integrating environmental information into a model, compared to models that are based solely on chlorophyll a, is discussed.
  • Working Paper
    EXPORTS Measurements and Protocols for the NE Pacific Campaign
    (NASA STI Program and Woods Hole Oceanographic Institution, 2021-02) Behrenfeld, Michael J. ; Benitez-Nelson, Claudia R. ; Boss, Emmanuel S. ; Brzezinski, Mark A. ; Buck, Kristen N. ; Buesseler, Ken O. ; Burd, Adrian B. ; Carlson, Craig A. ; Cassar, Nicolas ; Cetinić, Ivona ; Close, Hilary G. ; Craig, Susanne E. ; D'Asaro, Eric A. ; Durkin, Colleen A. ; Estapa, Margaret L. ; Fassbender, Andrea ; Fox, James ; Freeman, Scott ; Gifford, Scott M. ; Gong, Weida ; Graff, Jason R. ; Gray, Deric ; Guidi, Lionel ; Halsey, Kim ; Hansell, Dennis A. ; Haëntjens, Nils ; Horner, Tristan J. ; Jenkins, Bethany D. ; Jones, Janice L. ; Karp-Boss, Lee ; Kramer, Sasha J. ; Lam, Phoebe J. ; Lee, Craig M. ; Lee, Jong-Mi ; Liu, Shuting ; Mannino, Antonio ; Maas, Amy E. ; Marchal, Olivier ; Marchetti, Adrian ; McDonnell, Andrew M. P. ; McNair, Heather ; Menden-Deuer, Susanne ; Morison, Francoise ; Nelson, Norman B. ; Nicholson, David P. ; Niebergall, Alexandria K. ; Omand, Melissa M. ; Passow, Uta ; Perry, Mary J. ; Popp, Brian N. ; Proctor, Chris ; Rafter, Patrick ; Roca-Martí, Montserrat ; Roesler, Collin S. ; Rubin, Edwina ; Rynearson, Tatiana A. ; Santoro, Alyson E. ; Siegel, David A. ; Sosik, Heidi M. ; Soto Ramos, Inia ; Stamieszkin, Karen ; Steinberg, Deborah K. ; Stephens, Brandon M. ; Thompson, Andrew F. ; Van Mooy, Benjamin A. S. ; Zhang, Xiaodong
    EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology.
  • Article
    Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic
    (Nature Research, 2021-11-17) Diaz, Ben P. ; Knowles, Benjamin ; Johns, Christopher T. ; Laber, Christien P. ; Bondoc, Karen Grace V. ; Haramaty, Liti ; Natale, Frank ; Harvey, Elizabeth L. ; Kramer, Sasha J. ; Bolaños, Luis M. ; Lowenstein, Daniel P. ; Fredricks, Helen F. ; Graff, Jason R. ; Westberry, Toby K. ; Mojica, Kristina D. A. ; Haëntjens, Nils ; Baetge, Nicholas ; Gaube, Peter ; Boss, Emmanuel S. ; Carlson, Craig A. ; Behrenfeld, Michael J. ; Van Mooy, Benjamin A. S. ; Bidle, Kay D.
    Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.
  • Article
    An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment
    (University of California Press, 2021-07-07) Siegel, David A. ; Cetinić, Ivona ; Graff, Jason R. ; Lee, Craig M. ; Nelson, Norman B. ; Perry, Mary J. ; Soto Ramos, Inia ; Steinberg, Deborah K. ; Buesseler, Ken O. ; Hamme, Roberta C. ; Fassbender, Andrea ; Nicholson, David P. ; Omand, Melissa M. ; Robert, Marie ; Thompson, Andrew F. ; Amaral, Vinicius ; Behrenfeld, Michael J. ; Benitez-Nelson, Claudia R. ; Bisson, Kelsey ; Boss, Emmanuel S. ; Boyd, Philip ; Brzezinski, Mark A. ; Buck, Kristen N. ; Burd, Adrian B. ; Burns, Shannon ; Caprara, Salvatore ; Carlson, Craig A. ; Cassar, Nicolas ; Close, Hilary G. ; D'Asaro, Eric A. ; Durkin, Colleen A. ; Erickson, Zachary K. ; Estapa, Margaret L. ; Fields, Erik ; Fox, James ; Freeman, Scott ; Gifford, Scott M. ; Gong, Weida ; Gray, Deric ; Guidi, Lionel ; Haëntjens, Nils ; Halsey, Kim ; Huot, Yannick ; Hansell, Dennis A. ; Jenkins, Bethany D. ; Karp-Boss, Lee ; Kramer, Sasha J. ; Lam, Phoebe J. ; Lee, Jong-Mi ; Maas, Amy E. ; Marchal, Olivier ; Marchetti, Adrian ; McDonnell, Andrew M. P. ; McNair, Heather ; Menden-Deuer, Susanne ; Morison, Francoise ; Niebergall, Alexandria K. ; Passow, Uta ; Popp, Brian N. ; Potvin, Geneviève ; Resplandy, Laure ; Roca-Martí, Montserrat ; Roesler, Collin S. ; Rynearson, Tatiana A. ; Traylor, Shawnee ; Santoro, Alyson E. ; Seraphin, Kanesa ; Sosik, Heidi M. ; Stamieszkin, Karen ; Stephens, Brandon M. ; Tang, Weiyi ; Van Mooy, Benjamin ; Xiong, Yuanheng ; Zhang, Xiaodong
    The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.