Schoellhamer
David H.
Schoellhamer
David H.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
ArticleMethyl mercury dynamics in a tidal wetland quantified using in situ optical measurements(Association for the Sciences of Limnology and Oceanography, 2011-07) Bergamaschi, Brian A. ; Fleck, Jacob A. ; Downing, Bryan D. ; Boss, Emmanuel S. ; Pellerin, Brian A. ; Ganju, Neil K. ; Schoellhamer, David H. ; Byington, Amy A. ; Heim, Wesley A. ; Stephenson, Mark ; Fujii, RogerWe assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 µg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.
-
ArticleDecadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply(Springer, 2009-12-19) Ganju, Neil K. ; Schoellhamer, David H.Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.
-
ArticleFlow convergence caused by a salinity minimum in a tidal channel(CALFED Science Program, the California Digital Library eScholarship Repository, and the University of California—Davis John Muir Institute of the Environment., 2006-12) Warner, John C. ; Schoellhamer, David H. ; Burau, Jon R. ; Schladow, S. GeoffreyResidence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.
-
ArticleMercury dynamics in a San Francisco estuary tidal wetland : assessing dynamics using in situ measurements(Springer, 2012-04-03) Bergamaschi, Brian A. ; Fleck, Jacob A. ; Downing, Bryan D. ; Boss, Emmanuel S. ; Pellerin, Brian A. ; Ganju, Neil K. ; Schoellhamer, David H. ; Byington, Amy A. ; Heim, Wesley A. ; Stephenson, Mark ; Fujii, RogerWe used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.
-
ArticleHindcasting of decadal-timescale estuarine bathymetric change with a tidal-timescale model(American Geophysical Union, 2009-12-02) Ganju, Neil K. ; Schoellhamer, David H. ; Jaffe, Bruce E.Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.
-
ArticleDiscontinuous hindcast simulations of estuarine bathymetric change : a case study from Suisun Bay, California(Elsevier B.V., 2011-04-15) Ganju, Neil K. ; Jaffe, Bruce E. ; Schoellhamer, David H.Simulations of estuarine bathymetric change over decadal timescales require methods for idealization and reduction of forcing data and boundary conditions. Continuous simulations are hampered by computational and data limitations and results are rarely evaluated with observed bathymetric change data. Bathymetric change data for Suisun Bay, California span the 1867–1990 period with five bathymetric surveys during that period. The four periods of bathymetric change were modeled using a coupled hydrodynamic-sediment transport model operated at the tidal-timescale. The efficacy of idealization techniques was investigated by discontinuously simulating the four periods. The 1867–1887 period, used for calibration of wave energy and sediment parameters, was modeled with an average error of 37% while the remaining periods were modeled with error ranging from 23% to 121%. Variation in post-calibration performance is attributed to temporally variable sediment parameters and lack of bathymetric and configuration data for portions of Suisun Bay and the Delta. Modifying seaward sediment delivery and bed composition resulted in large performance increases for post-calibration periods suggesting that continuous simulation with constant parameters is unrealistic. Idealization techniques which accelerate morphological change should therefore be used with caution in estuaries where parameters may change on sub-decadal timescales. This study highlights the utility and shortcomings of estuarine geomorphic models for estimating past changes in forcing mechanisms such as sediment supply and bed composition. The results further stress the inherent difficulty of simulating estuarine changes over decadal timescales due to changes in configuration, benthic composition, and anthropogenic forcing such as dredging and channelization.