Mercury dynamics in a San Francisco estuary tidal wetland : assessing dynamics using in situ measurements
Mercury dynamics in a San Francisco estuary tidal wetland : assessing dynamics using in situ measurements
Date
2012-04-03
Authors
Bergamaschi, Brian A.
Fleck, Jacob A.
Downing, Bryan D.
Boss, Emmanuel S.
Pellerin, Brian A.
Ganju, Neil K.
Schoellhamer, David H.
Byington, Amy A.
Heim, Wesley A.
Stephenson, Mark
Fujii, Roger
Fleck, Jacob A.
Downing, Bryan D.
Boss, Emmanuel S.
Pellerin, Brian A.
Ganju, Neil K.
Schoellhamer, David H.
Byington, Amy A.
Heim, Wesley A.
Stephenson, Mark
Fujii, Roger
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1007/s12237-012-9501-3
Related Materials
Replaces
Replaced By
Keywords
Mercury
Tidal wetlands
San Francisco Bay
Sacramento River
Delta
Mercury flux
Sediment flux
Rivers
Wetlands
Estuaries
Wetland restoration
Tidal wetlands
San Francisco Bay
Sacramento River
Delta
Mercury flux
Sediment flux
Rivers
Wetlands
Estuaries
Wetland restoration
Abstract
We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.
Description
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 1036-1048, doi:10.1007/s12237-012-9501-3.
Embargo Date
Citation
Estuaries and Coasts 35 (2012): 1036-1048