Pietro Benjamin

No Thumbnail Available
Last Name
Pietro
First Name
Benjamin
ORCID

Search Results

Now showing 1 - 13 of 13
  • Technical Report
    The Northwest Tropical Atlantic Station (NTAS): NTAS-18 Mooring Turnaround Cruise Report Cruise On Board RV Ronald H. Brown January 6 –26, 2020 Bridgetown, Barbados – Bridgetown, Barbados
    (Woods Hole Oceanographic Institution, 2021-02-24) Bigorre, Sebastien P. ; Pietro, Benjamin ; Hasbrouck, Emerson
    The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations are used to investigate air–sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Global Ocean Monitoring and Observing (GOMO) Program (formerly Ocean Observing and Monitoring Division). This report documents recovery of the NTAS-17 mooring and deployment of the NTAS-18 mooring at the same site. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard R/V Ron Brown, Cruise RB-20-01. The cruise took place between January 6 and 26 2020. The NTAS-18 mooring was deployed on January 10, and the NTAS-17 mooring was recovered on January 15. Inter-comparison between ship and buoys were performed on this cruise. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations. Other operations during RB-20-01 consisted in the acoustic communications with the Meridional Overturning Variability Experiment (MOVE) subsurface mooring array MOVE 1-13 and acoustic downloads of data from Pressure Inverted Echo Sounders (PIES) was also conducted at MOVE 1. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic. Two ARGO floats were also deployed on behalf of the WHOI ARGO group. During the cruise, atmospheric measurements of aerosols, as well as radar, Lidar, radiosondes were made as part of the ATOMIC campaign. 3
  • Technical Report
    NTAS 16 sixteenth setting of the NTAS Ocean Reference Station cruise on board RV Endeavor January 21 - February 8, 2017 Narragansett, Rhode Island - San Juan, Puerto Rico
    (Woods Hole Oceanographic Institution, 2017-07) Bigorre, Sebastien P. ; Pietro, Benjamin ; Hasbrouck, Emerson ; Bigorre, Sébastien
    The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on inter-annual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15N, 51W by successive mooring turnarounds. These observations are used to investigate air–sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Ocean Observing and Monitoring Division. This report documents recovery of the NTAS-15 mooring and deployment of the NTAS-16 mooring. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard R/V Endeavor (cruise EN590). The cruise took place between January 21 and February 8 2017. The NTAS-16 mooring was deployed on January 30, and the NTAS-15 mooring was recovered on January 31. A 24-hour intercomparison period was conducted on January 29 in front of the NTAS 15 buoy, and again on February 1 in front of the NTAS 16 buoy. During the inter-comparisons, data from instrumentation on the buoys, telemetered through Argos satellite system, and the ship’s meteorological and oceanographic measurements were monitored while the ship was stationed 0.2 nm downwind of the buoys. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations. Other operations during EN590 consisted in the recovery and deployment of the Meridional Overturning Variability Experiment (MOVE) Pressure Inverted Echo Sounders (PIES) at two MOVE arrays (MOVE 1 in the east, and MOVE 3 in the west near Guadeloupe). Acoustic downloads of data from (PIES) and subsurface mooring (MOVE1, 3 and 4) were also conducted. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic.
  • Technical Report
    WHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-10 2013 mooring turnaround cruise report
    (Woods Hole Oceanographic Institution, 2014-07) Plueddemann, Albert J. ; Pietro, Benjamin ; Whelan, Sean P. ; Lukas, Roger ; Snyder, Jefrey ; Fumar, Cameron ; Roth, Ethan ; Nakahara, Branden ; McCoy, Danny ; George, Jennifer ; Wolfe, Dan
    The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaii Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the ninth WHOTS mooring (WHOTS-9) and deployment of the tenth mooring (WHOTS-10). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system and ancillary sensors were installed on the buoys in cooperation with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 9 and 16 July 2013. Operations began with deployment of the WHOTS-10 mooring on 10 July. This was followed by meteorological intercomparisons and CTDs. Recovery of the WHOTS-9 mooring took place on 14 July. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
  • Technical Report
    WHOI Hawaii Ocean Timeseries Station (WHOTS): WHOTS-11 2014 mooring Turnaround Cruise Report
    (Woods Hole Oceanographic Institution, 2015-07) Plueddemann, Albert J. ; Pietro, Benjamin ; Whelan, Sean P. ; Lukas, Roger ; Snyder, Jefrey ; Santiago-Mandujano, Fernando ; Nakahara, Branden ; McCoy, Danny ; Tabata, Ryan ; Tran, Thanh-van ; Lance, Kelly ; Blomquist, Byron
    The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaii Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the tenth WHOTS mooring (WHOTS-10) and deployment of the eleventh mooring (WHOTS-11). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system and ancillary sensors were installed on the buoys in cooperation with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 15 and 23 July 2014. Operations began with deployment of the WHOTS-11 mooring on 16 July. This was followed by meteorological intercomparisons and CTDs. Recovery of the WHOTS-10 mooring took place on 20 July. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
  • Technical Report
    WHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-8 2011 mooring turnaround cruise report
    (Woods Hole Oceanographic Institution, 2012-04) Whelan, Sean P. ; Lord, Jeffrey ; Duncombe Rae, Chris M. ; Plueddemann, Albert J. ; Snyder, Jefrey ; Nosse, Craig ; Lukas, Roger ; Boylan, Patrick ; Pietro, Benjamin ; Bariteau, Ludovic ; Sabine, Christopher L. ; Pezoa, Sergio
    The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the seventh WHOTS mooring (WHOTS-7) and deployment of the eighth mooring (WHOTS-8). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-8 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 5 July and 13 July 2011. Operations began with deployment of the WHOTS-8 mooring on 6 July. This was followed by meteorological intercomparisons and CTDs. Recovery of WHOTS-7 took place on 11 July 2011. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
  • Technical Report
    Stratus 15 fifteenth setting of the Stratus Ocean Reference Station cruise on board RV Cabo de Hornos June 15 – 29, 2016 Valparaiso, Chile – Valparaiso, Chile
    (Woods Hole Oceanographic Institution, 2016-10) Bigorre, Sebastien P. ; Weller, Robert A. ; Lord, Jeffrey ; Hasbrouck, Emerson ; Pietro, Benjamin ; Gazale, Dario Torres ; Jiménez, Ignacio Burgos
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and May. This cruise was conducted on the Chilean research vessel Cabo de Hornos. During the 2016 cruise on the Cabo de Hornos to the ORS Stratus site, the primary activities were the recovery of the previous (Stratus 14) WHOI surface mooring, deployment of the new Stratus 15 WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, CTD casts near the moorings. Surface drifters and ARGO floats were also launched along the track.
  • Technical Report
    The Northwest Tropical Atlantic Station (NTAS) : NTAS-14 mooring turnaround cruise report
    (Woods Hole Oceanographic Institution, 2015-12) Bigorre, Sebastien P. ; Pietro, Benjamin ; Smith, Jason C. ; Morris, Ethan ; Plueddemann, Albert J.
    The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air-sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations are used to investigate air-sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. This report documents recovery of the NTAS-13 mooring and deployment of the NTAS-14 mooring at the same site. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air-Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air-sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard R/V Endeavor, Cruise EN549. The cruise took place between December 5 and 21 December 2014. The NTAS-14 mooring was deployed on December 13, and immediately followed by a 36-hour intercomparison period during which data from the buoy, telemetered through Argos satellite system, and the ship’s meteorological and oceanographic data were monitored. The NTAS-13 buoy had parted on September 23 and was recovered on October 28 while drifting freely near Martinique. The rest of the mooring, which had fallen to the seafloor was recovered during EN549, on December 17. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations. Other operations during EN549 consisted in the recovery and deployment of Pressure Inverted Echo Sounders (PIES) and the acoustic download of data from PIES and subsurface moorings that are part of the Meridional Overturning Variability Experiment (MOVE) array. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic. Two Argo floats were also deployed during the cruise on behalf of the Argo group at WHOI.
  • Technical Report
    The Northwest Tropical Atlantic Station (NTAS) : NTAS-17 mooring turnaround cruise report cruise on board FV Pisces May 30 – June 21, 2018 Mayport, FL, USA – Morehead City, NC, USA
    (Woods Hole Oceanographic Institution, 2018-09) Bigorre, Sebastien P. ; Pietro, Benjamin ; Smith, Jason ; Lankhorst, Matthias ; Koelling, Jannes
    The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15N, 51W by successive mooring turnarounds. These observations are used to investigate air–sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Ocean Observing and Monitoring Division. This report documents recovery of the NTAS-16 mooring and deployment of the NTAS-17 mooring at the same site. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard F/V Pisces, Cruise PC-18-03. The cruise took place between May 30 and June 21 2018. The NTAS-17 mooring was deployed on June 10, and the NTAS-16 mooring was recovered on June 12. No inter-comparison between ship and buoys was performed on this cruise. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations. Other operations during PC-18-03 consisted in the recovery and deployment of the Meridional Overturning Variability Experiment (MOVE) subsurface moorings array (MOVE 1 in the east, and MOVE 3 and 4 in the west near Guadeloupe). Acoustic download of data from Pressure Inverted Echo Sounders (PIES) was also conducted. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic.
  • Technical Report
    Eighteenth Setting of the Stratus Ocean Reference Station Cruise On Board RV Cabo de Hornos April 8 - 27, 2019 Valparaiso, Chile - Valparaiso, Chile
    (Woods Hole Oceanographic Institution, 2019-10) Bigorre, Sebastien P. ; Hasbrouck, Emerson ; Pietro, Benjamin ; Search, Francesca ; Alquinta, Sasha ; Pezoa, Sergio ; Llanos, Nicolas
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and May. This cruise was conducted on the Chilean research vessel Cabo de Hornos. During the 2019 cruise on the Cabo de Hornos to the ORS Stratus site, the primary activities were the recovery of the previous (Stratus 17) WHOI surface mooring, deployment of the new Stratus 18 WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, CTD casts near the moorings. Ancillary tasks performed were the deployments of surface drifters and ARGO floats along the track.
  • Technical Report
    WHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-9 2012 mooring turnaround cruise report
    (Woods Hole Oceanographic Institution, 2013-03) Plueddemann, Albert J. ; Ryder, James R. ; Pietro, Benjamin ; Smith, Jason C. ; Duncombe Rae, Chris M. ; Lukas, Roger ; Nosse, Craig ; Snyder, Jefrey ; Bariteau, Ludovic ; Park, Sang-Jong ; Hashisaka, David ; Roth, Ethan ; Fumar, Cameron ; Andrews, Alison ; Seymour, Nicholas
    The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaii Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the eighth WHOTS mooring (WHOTS-8) and deployment of the ninth mooring (WHOTS-9). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the buoys in cooperation with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 12 and 19 June 2012. Operations began with deployment of the WHOTS-9 mooring on 13 June. This was followed by meteorological intercomparisons and CTDs. Recovery of the WHOTS-8 mooring took place on 16 June. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
  • Technical Report
    Stratus 16 Sixteenth Setting of the Stratus Ocean Reference Station Cruise on Board RV Ronald H. Brown May 5 - 20, 2017 Rodman, Panama - Arica, Chile
    (Woods Hole Oceanographic Institution, 2021-01) Bigorre, Sebastien P. ; Weller, Robert A. ; Blomquist, Byron ; Pietro, Benjamin ; Hasbrouck, Emerson ; Pezoa, Sergio
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and May. This cruise was conducted on the NOAA research vessel Ronald H. Brown. During the 2017 cruise on the Ronald H. Brown to the ORS Stratus site, the primary activities were the recovery of the previous (Stratus 15) WHOI surface mooring, deployment of the new Stratus 16 WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, CTD casts near the moorings. Surface drifters and ARGO floats were also launched along the track.
  • Technical Report
    The Northwest Tropical Atlantic Station (NTAS): NTAS-19 Mooring Turnaround Cruise Report Cruise On Board RV Ronald H. Brown October 14 - November 1, 2020
    (Woods Hole Oceanographic Institution, 2021-01) Plueddemann, Albert J. ; Pietro, Benjamin ; Hasbrouck, Emerson
    The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the NTAS-18 mooring and deployment of the NTAS-19 mooring at the same site. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. Deep ocean temperature and salinity are measured at approximately 38 m above the bottom. The mooring turnaround was done on the National Oceanic and Atmospheric Administration (NOAA) Ship Ronald H. Brown, Cruise RB-20-06, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 14 October and 1 November 2020. The NTAS-19 mooring was deployed on 22 October, with an anchor position of about 14° 49.48° N, 51° 00.96° W in 4985 m of water. A 31-hour intercomparison period followed, during which satellite telemetry data from the NTAS-19 buoy and the ship’s meteorological sensors were monitored. The NTAS-18 buoy, which had gone adrift on 28 April 2020, was recovered on 20 October near 13° 41.96° N, 58° 38.67° W. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations.
  • Technical Report
    Stratus 17 seventeenth setting of the Stratus Ocean Reference Station cruise on board RV Cabo de Hornos April 3 - 16, 2018 Valparaiso - Valparaiso, Chile
    (Woods Hole Oceanographic Institution, 2021-03) Bigorre, Sebastien P. ; Pietro, Benjamin ; Gubler, Alejandra ; Search, Francesca ; Hasbrouck, Emerson ; Pezoa, Sergio ; Weller, Robert A.
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and May. This cruise was conducted on the Chilean research vessel Cabo de Hornos. During the 2018 cruise on the Cabo de Hornos to the ORS Stratus site, the primary activities were the recovery of the previous (Stratus 16) WHOI surface mooring, deployment of the new Stratus 17 WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, CTD casts near the moorings. The Stratus 17 had parted from its anchor site on January 4 2018, so its recovery was done in two separate operations: first the drifting buoy with mooring line under it, then the bottom part still attached to the anchor. Surface drifters and ARGO floats were also launched along the track.