Bouchard
Paul R.
Bouchard
Paul R.
No Thumbnail Available
15 results
Search Results
Now showing
1 - 15 of 15
-
Technical ReportLong-term evolution of the coupled boundary layers (STRATUS) mooring recovery and deployment cruise report NOAA Research Vessel R H Brown • cruise RB-01-08 9 October - 25 October 2001(Woods Hole Oceanographic Institution, 2002-02) Vallee, Charlotte ; Weller, Robert A. ; Bouchard, Paul R. ; Ostrom, William M. ; Lord, Jeffrey ; Gobat, Jason I. ; Pritchard, Mark ; Westberry, Toby K. ; Hare, Jeffrey E. ; Uttal, Taneil ; Yuter, Sandra ; Rivas, David ; Baumgardner, Darrel ; McCarty, Brandi ; Shannahoff, Jonathan ; Walsh, M. Alexander ; Bahr, Frank B.This report documents the work done on cruise RB-01-08 of the NOAA R/V Ron Brown. This was Leg 2 of R/V Ron Brown’s participation in Eastern Pacific Investigation of Climate (EPIC) 2001, a study of air-sea interaction, the atmosphere, and the upper ocean in the eastern tropical Pacific. The science party included groups from the Woods Hole Oceanographic Institution (WHOI), NOAA Environmental Technology Laboratory (ETL), the University of Washington (UW), the University of California, Santa Barbara (UCSB), and the University Nacional Autonoma de Mexico (UNAM). The work done by these groups is summarized in this report. In addition, the routine underway data collected while aboard R/V Ron Brown is also summarized here.
-
Technical ReportStratus Ocean Reference Station (20˚S, 85˚W), mooring recovery and deployment cruise, R/V Ron Brown cruise 04-11, December 5 - December 24, 2004(Woods Hole Oceanographic Institution, 2005-05) Colbo, Keir ; Weller, Robert A. ; Lord, Jeffrey ; Smith, Jason C. ; Bouchard, Paul R. ; Fairall, Christopher W. ; Bradley, Frank ; Wolfe, Dan ; Serpetzoglou, Efthymios ; Tomlinson, Jason ; Tisandie, Alvaro Gustave Vera ; Bustos, Juan Francisco SantibanezThe Ocean Reference Station at 20° S, 85° W under the stratus clouds west of northern Chile and Peru is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the December 2004 cruise of NOAA's R/V Ronald H. Brown to the ORS Stratus site, the primary activities where the recovery of the WHOI surface mooring that had been deployed in November 2003, the deployment of a new WHOI surface mooring at that site, the in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL and Jason Tomlinson from Texas A&M. The ORS Stratus buoys are equipped with two Improved Meteorological systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ETL instrumentation used during the 2004 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. The atmospheric observations also benefited from the C-Band radar mounted on the R/V Ronald H. Brown. In addition to this work, buoy work was done in support of the Chilean Navy Hydrographic and Oceanographic Service (SHOA). A tsunami warning mooring was reinstalled at 75°W, 20°S for SHOA, after the previous buoy installed last year failed. SHOA personnel were onboard to direct the deployment and to gain experience. Four students from the University of Concepcion collected hydrographic data and water samples. One other Chilean student from the University of Chile was involved in the atmospheric sampling program, with a particular focus on the near coast jet. Finally, the cruise hosted a teacher participating in NOAA's Teacher at Sea Program, Mary Esther Cook, who used her experience to develop lessons for her class back in Arkansas.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-5 2008 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2009-04) Whelan, Sean P. ; Lord, Jeffrey ; Weller, Robert A. ; Lukas, Roger ; Santiago-Mandujano, Fernando ; Snyder, Jefrey ; Lethaby, Paul ; Bahr, Frank B. ; Sabine, Christopher L. ; Smith, Jason C. ; Bouchard, Paul R. ; Galbraith, Nancy R.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first four WHOTS moorings (WHOTS-1 through 4) were deployed in August 2004, July 2005, June 2006, and June 2007, respectively. This report documents recovery of the WHOTS-4 mooring and deployment of the fifth mooring (WHOTS-5). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-5 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-08-08, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 3 and 11 June 2008. Operations began with deployment of the WHOTS-5 mooring on 5 June at approximately 22°46.1'N, 157°54.1'W in 4702 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-4 site. A period of calmer weather was taken advantage of to recover WHOTS-4 on 6 June 2008. The Kilo Moana then returned to the WHOTS-5 mooring for CTD operations and meteorological intercomparisons. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
-
Technical ReportThe Northwest Tropical Atlantic Station (NTAS) : NTAS-2 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2002-09) Plueddemann, Albert J. ; Ostrom, William M. ; Galbraith, Nancy R. ; Bouchard, Paul R. ; Tupper, George H. ; Dunn, James M. ; Walsh, M. AlexanderThe Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. Deployment of the first NTAS mooring (NTAS-1) at 14°50′ N, 51°00′ W on 30 March 2001 was documented in a previous report (Plueddemann et al., 2001). This report documents recovery of the NTAS-1 mooring and deployment of the NTAS-2 mooring at the same site. Both moorings used 3-meter discus buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 120 m of the NTAS-1 mooring line, and the upper 150 m of the NTAS-2 mooring line, were outfitted with oceanographic sensors for the measurement of temperature and velocity. The mooring turnaround was done on the NOAA Ship Ronald H. Brown, Cruise RB-02-02, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 2 and 8 March 2002. A SeaBeam bathymetry survey of the site was done first, followed by deployment of the NTAS-2 mooring on 4 March at approximately 14°44.3′ N, 50°56.8′ W in 5043 m of water. A 24-hour intercomparison period followed, after which the NTAS-1 mooring was recovered. This report describes these operations, as well as some of the pre-cruise buoy preparations.
-
Technical ReportAt Sea Test 2 deployment cruise : cruise 475 on board R/V Oceanus September 22 – 26, 2011 Woods Hole –Woods Hole, MA(Woods Hole Oceanographic Institution, 2011-10) Weller, Robert A. ; Lund, John M. ; von der Heydt, Keith ; Palanza, Matthew ; Lerner, Steven A. ; Scholz, Tim ; Begler, Christian ; Siddal, Gregg ; Ostrom, William M. ; Newhall, Kris ; Bouchard, Paul R. ; McMonagle, Kathleen ; Jamieson, Eric ; Petitt, Robert A. ; O’Brien, Jeff ; Cook, GaryThe R/V Oceanus, on Cruise 475, carried out the deployment of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Oceanus departed from Woods Hole, Massachusetts on September 22, 2011 and steamed south to the location of the mooring deployments on the shelf break. Over three days, September 23-25, Oceanus surveyed the bottom at the planned mooring sites, deployed the moorings, and carried out on site verification of the functioning of the moorings and moored hardware. Oceanus returned to Woods Hole on September 26, 2011.
-
Technical ReportStratus Ocean Reference Station (20˚S, 85˚W) mooring recovery and deployment cruise STRATUS 8 R/V Ronald H. Brown cruise 07-09 October 9, 2007–November 6, 2007(Woods Hole Oceanographic Institution, 2007-12) Whelan, Sean P. ; Lord, Jeffrey ; Grados, Carmen ; Yu, Lisan ; Morales, Luis ; Galbraith, Nancy R. ; de Szoeke, Simon P. ; O'Leary, Megan ; Weller, Robert A. ; Bouchard, Paul R. ; Farrar, J. Thomas ; Bradley, FrankThe Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology (air-sea fluxes of heat, freshwater, and momentum), and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises between October and December. During the October 2007 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 7 WHOI surface mooring that had been deployed in October 2006, deployment of a new (Stratus 8) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board the ship by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. Meteorological sensors on a buoy for the Pacific tsunami warning system were also serviced, in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A new DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial pressure of CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2007 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
-
Technical ReportCBLAST-Low 2001 pilot study mooring deployment cruise and data report ; FV Nobska, June 4 to August 17, 2001(Woods Hole Oceanographic Institution, 2002-05) Pritchard, Mark ; Gobat, Jason I. ; Ostrom, William M. ; Lord, Jeffrey ; Bouchard, Paul R.During the summer of 2001, several moorings and cruises were used as part of the CBLAST-Low (Coupled Boundary Layer Air-Sea Transfer under low wind conditions) pilot experiment in the North Atlantic, south of Martha’s Vineyard Island, MA, USA. Six subsurface tide gauges were deployed around the study site for a period of approximately 3 months during the summer of 2001. Further, two surface buoys equipped with meteorological instrumentation and subsurface arrays that measured temperature, conductivity and velocity were deployed during the months of July and August 2001. For a short intensive operating period during July 2001, a newly manufactured three-dimensional mooring designed to sample three-dimensional properties of the upper ocean was deployed for a period of 6 days. During the Intensive Operating Period (IOP) along-shelf and across-shelf conductivity-temperature-depth (CTD) sections were completed as well as a drifting array designed to passively collect data from the upper water column released for approximately 24 hours. This report describes the instrumentation and type of moorings deployed by the Woods Hole Oceanographic Institution Upper Ocean Processes (WHOI UOP) group as well as data return and quality from the CBLAST-Low 2001 pilot study. This is summarized in graphical and tabular form in this report.
-
Technical ReportThe Marine light - mixed layer experiment cruise and data report, R/V Endeavor : cruise EN-224, mooring deployment, 27 April-1 May 1991, cruise EN-227, mooring recovery, 5-23 September 1991(Woods Hole Oceanographic Institution, 1993-05) Plueddemann, Albert J. ; Weller, Robert A. ; Dickey, Thomas D. ; Marra, John F. ; Tupper, George H. ; Way, Bryan S. ; Ostrom, William M. ; Bouchard, Paul R. ; Oien, Andrea L. ; Galbraith, Nancy R.The Marine Light - Mixed Layer experiment took place in the sub-Arctic North Atlantic ocean, approximately 275 miles south of Reykjavik, Iceland. The field program included a central surface mooring to document the temporal evolution of physical, biological and optical properties. The surface mooring was deployed at approximately 59°N, 21°W on 29 April 1991 and recovered on 6 September 1991. The Upper Ocean Processes Group of the Woods Hole Oceanographic Institution was responsible for design, preparation, deployment, and recovery of the mooring. The Group's contrbution to the field measurements included four different types of sensors: a meteorological observation package on the surface buoy, a string of 15 temperature sensors along the mooring line, an acoustic Doppler current profiler, and four instruments for measuring mooring tension and accelerations. The observations obtained from the mooring are sufficient to describe the air-sea fluxes and the local physical response to surface forcing. The objective in the analysis phase will be to determine the factors controlling this physical response and to work towards an understanding of the links among physical, biological, and optical processes. This report describes the deployment and recovery of the mooring, the meteorological data, and the subsurface temperature and current data.
-
Technical ReportSecNav / CBLAST 2002 field experiment deployment / recovery cruises and data report, F/V Nobska, June 19-20, 2002, F/V Nobska, September 4 and 9, 2002, mooring data, June 19 - September 9, 2002(Woods Hole Oceanographic Institution, 2003-09) Hutto, Lara ; Lord, Jeffrey ; Bouchard, Paul R. ; Weller, Robert A. ; Pritchard, MarkDuring the summer of 2002, six surface moorings and one subsurface mooring were deployed south of Martha's Vineyard, Cape Cod, Massachusetts. The moorings were deployed from June to September 2002 to collect meteorological and oceanographic data. This was done both to support the Coupled Boundary Layered Air-Sea Transfer Low wind (CBLAST-Low) cooperative experiment and to address the question of regional predictability in the littoral regime under research supported by a Secretary of the Navy/Chief of Naval Operations (CNO) Chair. The aim was to capture the mesoscale development and response of inner shelf waters to local synoptic atmospheric, tidal and larger scale oceanic forcing under predominantly low wind conditions. This report covers the operational aspects of the 2002 experiment, including deployment, recovery, and mooring setups, as well as basic data returns.
-
Technical ReportLong-term evolution and coupling of the boundary layers in the Stratus Deck Regions of the eastern Pacific (STRATUS)(Woods Hole Oceanographic Institution, 2001-06) Lucas, Lisanne E. ; Way, Bryan S. ; Weller, Robert A. ; Bouchard, Paul R. ; Fischer, Albert S. ; Moffat, Carlos F. ; Schneider, Wolfgang ; Fewings, Melanie R.A surface mooring was deployed in the eastern tropical Pacific west of northern Chile from the R/V Melville as part of the Eastern Pacific Investigation of Climate (EPIC). EPIC is a CLIVAR study with the goal of investigating links between sea surface temperature variability in the eastern tropical Pacific and climate over the American continents. Important to that goal is an understanding of the role of clouds in the eastern Pacific in modulating atmosphere-ocean coupling. The mooring was deployed near 20°S 85°W, at a location near the western edge of the stratocumulus cloud deck found west of Peru and Chile. This deployment started a three-year occupation of that site by a WHOI surface mooring in order to collect accurate time series of surface forcing and upper ocean variability. The surface mooring was deployed by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI). In collaboration with investigators from the University of Concepcion, Concepcion, Chile, an XBT section was made on the way out to the mooring from Arica, Chile, and an XBT and CTD section was made on the way into Arica. The buoy was equipped with meteorological instrumentation, including two Improved METeorological (IMET) systems. The mooring also carried Vector Measuring Current Meters, single-temperature recorders, and conductivity and temperature recorders located in the upper meters of the mooring line. In addition to the instrumentation noted above, a variety of other instruments, including an acoustic current meter, an acoustic doppler current profiler, a bio-optical instrument package, and an acoustic rain guage, were deployed. This report describes, in a general manner, the work that took place and the data collected during the Cook 2 cruise aboard the R/V Melville. The surface mooring deployed during this cruise will be recovered and re-deployed after approximately 12 months and again after 24 months, with a final recovery planned for 36 months after the first setting. Details of the mooring design and preliminary data from the XBT and CTD sections are included.
-
Technical ReportKing Abdullah University of Science and Technology (KAUST) mooring deployment cruise and fieldwork report, fall 2008 R/V Oceanus voyage 449-5, October 9, 2008–October 14, 2008(Woods Hole Oceanographic Institution, 2009-07) Farrar, J. Thomas ; Lentz, Steven J. ; Churchill, James H. ; Bouchard, Paul R. ; Smith, Jason C. ; Kemp, John N. ; Lord, Jeffrey ; Allsup, Geoffrey P. ; Hosom, David S.King Abdullah University of Science and Technology (KAUST) is being built near Thuwal, Saudi Arabia with the goal of becoming a world-class, graduate-level research university. As a step toward this goal, KAUST has partnered with the Woods Hole Oceanographic Institution (WHOI) to undertake various studies of the oceanography of the Red Sea in order to establish a research program in ocean sciences by the time the university opens its doors in the fall of 2009. Two of the KAUST-WHOI research projects involve deployment of surface moorings and associated instrumentation to measure physical properties of the Red Sea, such as temperature, salinity, and currents, at four locations off the coast of Saudi Arabia. The goal of these measurements is to better understand the evolution and dynamics of the circulation and air-sea interaction in the Red Sea. Two surface moorings and two bottom tripods (PI, Steven Lentz) were deployed at 50-55-m depth near 21°57'N, 38°46'E over the continental shelf close to the Saudi coast. An additional surface mooring/bottom tripod pair was deployed near 21°58'N, 38°50'E at the outer fringe of a reef system directly onshore of the shelf mooring/tripod pairs (PI, Lentz). The coastal moorings carry instruments to estimate temperature, salinity, and fluorescence; and the nearby bottom tripods support instruments to measure bottom pressure and the vertical profile of the currents. Additional instruments, principally bottom temperature sensors, were deployed over the reef system onshore of the shelf moorings. One air-sea interaction mooring (PI, J. Thomas Farrar) was deployed at 693-m depth near 22°10'N, 38°30'E. The air-sea interaction mooring carries instruments for measuring temperature, salinity, (water) velocity, winds, air temperature, humidity, barometric pressure, incident sunlight, infrared radiation, precipitation, and surface waves. A coastal meteorological tower was also installed on the KAUST campus in Thuwal (PI, Farrar). These measurements are of value because there are few time series of oceanographic and meteorological properties of the Red Sea that can be used to characterize the circulation, test numerical models of the Red Sea circulation, or formulate theoretical models of the physics of the Red Sea circulation. These measurements will permit a characterization of the Red Sea circulation with high temporal resolution at the mooring locations, and accurate in-situ estimates of the air-sea exchange of heat, freshwater, and momentum. In October 2008, a cruise was made aboard the R/V Oceanus to deploy the shelf and air-sea interaction moorings, and other fieldwork (e.g., tower instrumentation and deployment of reef instrumentation) was conducted after the cruise. Some additional data were collected during the cruise with shipboard instrumentation. This report documents the cruise and the data collected during the fall 2008 fieldwork.
-
Technical ReportStratus Ocean Reference Station (20˚S, 85˚W), mooring recovery and deployment cruise R/V Ronald H. Brown cruise 05-05, September 26, 2005–October 21, 2005(Woods Hole Oceanographic Institution, 2006-02) Hutto, Lara ; Weller, Robert A. ; Lord, Jeffrey ; Smith, Jason C. ; Bouchard, Paul R. ; Fairall, Christopher W. ; Pezoa, Sergio ; Bariteau, Ludovic ; Lundquist, Jessica ; Ghate, Virendra P. ; Castro, Rodrigo ; Cisternas, CarolinaThe Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the October 2005 cruise of NOAA’s R/V Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the WHOI surface mooring that had been deployed in December 2004, deployment of a new WHOI surface mooring at that site, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ETL instrumentation used during the 2005 cruise included cloud radar, radiosonde ballons, and sensors for mean and turbulent surface meteorology. In addition, two technicians from the University of Concepcion collected water samples for chemical analysis. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-2 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2006-03) Plueddemann, Albert J. ; Weller, Robert A. ; Lukas, Roger ; Lord, Jeffrey ; Bouchard, Paul R. ; Walsh, M. AlexanderThe Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a coordinated part of the HOT program and contribute to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. This report documents recovery of the WHOTS-1 mooring, deployed in August 2004 near 22.75°N, 158°W, and deployment of the WHOTS-2 mooring at the same site. Both moorings were outfitted with Air-Sea Interaction Meteorology (ASIMET) systems to measure, record, and transmit the surface meteorological variables necessary to compute air-sea fluxes of heat, moisture and momentum. In cooperation with R. Lukas of the University of Hawaii, the upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity. The WHOTS mooring turnaround was done on the Scripps Institution of Oceanography Ship Melville, Cruise TUIM-10MV. The cruise took place between 23 and 30 July 2005.
-
Technical ReportThe Northwest Tropical Atlantic Station (NTAS) : NTAS-4 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2006-05) Plueddemann, Albert J. ; Ostrom, William M. ; Galbraith, Nancy R. ; Bouchard, Paul R. ; Hogue, Brian P. ; Wasnewski, Brandon R. ; Walsh, M. AlexanderThe Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. Deployment of the first (NTAS-1), second (NTAS-2) and third (NTAS-3) moorings were documented in previous reports (Plueddemann et al., 2001; 2002; 2003). This report documents recovery of the NTAS-3 mooring and deployment of the NTAS-4 mooring at the same site. Both moorings used 3-meter discus buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 150 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature and velocity. The mooring turnaround was done on the NOAA ship Ronald H. Brown, Cruise RB-04-01, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 12 and 25 February 2004. The NTAS-3 buoy was found adrift and recovered on 19 February at 14°53.7’N, 51°22.8’W. Deployment of the NTAS-4 mooring was on 21 February at approximately 14°44.4’N, 50°56.0’W in 5038 m of water. A 30-hour intercomparison period followed, after which dragging operations to recover the lower portion of the NTAS-3 mooring commenced. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations.
-
Technical ReportLong-term evolution of the coupled boundary layers (Stratus) mooring recovery and deployment cruise report R/V Melville(Woods Hole Oceanographic Institution, 2003-01) Hutto, Lara ; Weller, Robert A. ; Lord, Jeffrey ; Ryder, James R. ; Stuart-Menteth, Alice ; Galbraith, Nancy R. ; Bouchard, Paul R. ; Maturana, Jenny ; Pizarro, Oscar ; Letelier, JaimeThe Long Term Evolution and Coupling of the Boundary Layers Study (referred to as the Stratus Project) is an effort to obtain a reliable multi-year dataset of meteorological and subsurface measurements beneath the stratus cloud deck off the coast of Chile and Peru. This data will improve our understanding of the role of clouds in ocean-atmosphere coupling. This project is part of the Eastern Pacific Investigation of Climate (EPIC), a NOAA-funded Climate Variability (CLIVAR) study. During the Stratus 2002 cruise, a surface mooring that had been deployed for one year off the coast of Chile was recovered, and a new surface mooring was deployed in the same location. The 2002 deployment starts the final year of a three-year occupation of the site by a Woods Hole Oceanographic Institution (WHOI) mooring as part of the Enhanced Monitoring element of EPIC. The occupation of the site will be continued under the NOAA Climate Observations Program, with the mooring serving as a Surface Reference Site. The Stratus buoys were equipped with surface meteorological instrumentation, mainly two Improved METeorological (IMET) systems. The moorings also carried subsurface equipment attached to the mooring line, which measured conductivity, temperature, current direction and velocity, chlorophyll-a, and rainfall. The moorings were recovered and deployed by the Upper Ocean Processes Group of WHOI from the Scripps Institution of Oceanography’s R/V Melville. In collaboration with investigators from the Chilean Navy Hydrographic and Oceanographic Service (SHOA) and the University of Concepcion, Chile, conductivity, temperature, and depth (CTD) profiles were obtained at the mooring site and along 20°S while steaming east from the mooring site.