Tsunami and infragravity waves impacting Antarctic ice shelves

Thumbnail Image
Date
2017-07-20
Authors
Bromirski, Peter D.
Chen, Zhao
Stephen, Ralph A.
Gerstoft, Peter
Arcas, Diego R.
Diez, Anja
Aster, Richard C.
Wiens, Douglas A.
Nyblade, Andrew A.
Alternative Title
Date Created
Location
DOI
10.1002/2017JC012913
Related Materials
Replaces
Replaced By
Keywords
Antarctic ice shelves
Bathymetry focusing
Tsunami
Infragravity waves
Flexural-gravity waves
Extensional Lamb waves
Iceberg calving trigger
Abstract
The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50–300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (∼70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.
Description
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 5786–5801, doi:10.1002/2017JC012913.
Embargo Date
Citation
Journal of Geophysical Research: Oceans 122 (2017): 5786–5801
Cruises
Cruise ID
Cruise DOI
Vessel Name