Grasshopper DCMD : an undergraduate electrophysiology lab for investigating single-unit responses to behaviorally-relevant stimuli

Thumbnail Image
Date
2017-05
Authors
Nguyen, Dieu My T.
Roper, Mark
Mircic, Stanislav
Olberg, Robert M.
Gage, Gregory J.
Linked Authors
Alternative Title
As Published
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Descending contralateral motion detector (DCMD)
Eye
Electrophysiology
Grasshopper vision
Looming
Escape response
DIY
Mobile application
Neuroethology
Abstract
Avoiding capture from a fast-approaching predator is an important survival skill shared by many animals. Investigating the neural circuits that give rise to this escape behavior can provide a tractable demonstration of systems-level neuroscience research for undergraduate laboratories. In this paper, we describe three related hands-on exercises using the grasshopper and affordable technology to bring neurophysiology, neuroethology, and neural computation to life and enhance student understanding and interest. We simplified a looming stimuli procedure using the Backyard Brains SpikerBox bioamplifier, an open-source and low-cost electrophysiology rig, to extracellularly record activity of the descending contralateral movement detector (DCMD) neuron from the grasshopper’s neck. The DCMD activity underlies the grasshopper's motor responses to looming monocular visual cues and can easily be recorded and analyzed on an open-source iOS oscilloscope app, Spike Recorder. Visual stimuli are presented to the grasshopper by this same mobile application allowing for synchronized recording of stimuli and neural activity. An in-app spike-sorting algorithm is described that allows a quick way for students to record, sort, and analyze their data at the bench. We also describe a way for students to export these data to other analysis tools. With the protocol described, students will be able to prepare the grasshopper, find and record from the DCMD neuron, and visualize the DCMD responses to quantitatively investigate the escape system by adjusting the speed and size of simulated approaching objects. We describe the results from 22 grasshoppers, where 50 of the 57 recording sessions (87.7%) had a reliable DCMD response. Finally, we field-tested our experiment in an undergraduate neuroscience laboratory and found that a majority of students (67%) could perform this exercise in one two-hour lab setting, and had an increase in interest for studying the neural systems that drive behavior.
Description
Author Posting. © Faculty for Undergraduate Neuroscience, 2017. This article is posted here by permission of Faculty for Undergraduate Neuroscience for personal use, not for redistribution. The definitive version was published in Journal of Undergraduate Neuroscience Education 15 (2017): A162-A173.
Embargo Date
Citation
Journal of Undergraduate Neuroscience Education 15 (2017): A162-A173
Cruises
Cruise ID
Cruise DOI
Vessel Name