Production and destruction of eddy kinetic energy in forced submesoscale eddy-resolving simulations

Thumbnail Image
Date
2016-12-02
Authors
Mukherjee, Sonaljit
Ramachandran, Sanjiv
Tandon, Amit
Mahadevan, Amala
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Submesoscale
Mixed layer
Dissipation
Eddies
Restratification
Vertical mixing
Abstract
We study the production and dissipation of the eddy kinetic energy (EKE) in a submesoscale eddy field forced with downfront winds using the Process Study Ocean Model (PSOM) with a horizontal grid resolution of 0.5 km. We simulate an idealized 100 m deep mixed-layer front initially in geostrophic balance with a jet in a domain that permits eddies within a range of O(1km–100 km). The vertical eddy viscosities and the dissipation are parameterized using four different subgrid vertical mixing parameterizations: the k−ϵ,k−ϵ, the KPP, and two different constant eddy viscosity and diffusivity profiles with a magnitude of O(10−2m2s−1) in the mixed layer. Our study shows that strong vertical eddy viscosities near the surface reduce the parameterized dissipation, whereas strong vertical eddy diffusivities reduce the lateral buoyancy gradients and consequently the rate of restratification by mixed-layer instabilities (MLI). Our simulations show that near the surface, the spatial variability of the dissipation along the periphery of the eddies depends on the relative alignment of the ageostrophic and geostrophic shear. Analysis of the resolved EKE budgets in the frontal region from the simulations show important similarities between the vertical structure of the EKE budget produced by the k−ϵk−ϵ and KPP parameterizations, and earlier LES studies. Such an agreement is absent in the simulations using constant eddy-viscosity parameterizations.
Description
© The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 105 (2016): 44-59, doi:10.1016/j.ocemod.2016.07.002.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International