Marine Policy Center (MPC)

Permanent URI for this collection

The Marine Policy Center (MPC) is the social science research unit of the Woods Hole Oceanographic Institution (WHOI). MPC’s research integrates social sciences, such as economics and policy analysis, with WHOI’s basic strength in ocean sciences. Current research focuses on issues such as progress in science and technology, access to and control of marine resources, and conservation and environmental protection. While MPC’s research is based in rigorous academic disciplines, much of it is applied in nature and motivated by current issues in marine resource management and marine industries.

Browse

Recent Submissions

Now showing 1 - 20 of 170
  • Article
    Unveiling the hidden economic toll of biological invasions in the European Union
    (Springer Open, 2023-06-08) Morgane, Henry ; Leung, Brian ; Cuthbert, Ross N. ; Bodey, Thomas W. ; Ahmed, Danish A. ; Angulo, Elena ; Balzani, Paride ; Briski, Elizabeta ; Courchamp, Franck ; Hulme, Philip E. ; Kouba, Antonin ; Kourantidou, Melina ; Liu, Chunlong ; Macedo, Rafael L. ; Oficialdegui, Francisco J. ; Renault, David ; Soto, Ismael ; Tarkan, Ali Serhan ; Turbelin, Anna J. ; Bradshaw, Corey J. A. ; Haubrock, Phillip J.
    Background: Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated. Results: We used the latest available cost data in InvaCost (v4.1)—the most comprehensive database on the costs of biological invasions—to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states. Conclusions: Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally.
  • Article
    Parasite diversity at isolated, disturbed hydrothermal vents
    (The Royal Society, 2023-06-14) Dykman Lauren ; Tepolt, Carolyn K. ; Kuris, Armand M. ; Solow, Andrew R. ; Mullineaux, Lauren S.
    Habitat isolation and disturbance are important regulators of biodiversity, yet it remains unclear how these environmental features drive differences in parasite diversity between ecosystems. We test whether the biological communities in an isolated, frequently disturbed marine ecosystem (deep-sea hydrothermal vents) have reduced parasite richness and relatively fewer parasite species with indirect life cycles (ILCs) compared to ecosystems that are less isolated and less disturbed. We surveyed the parasite fauna of the biological community at the 9°50′N hydrothermal vent field on the East Pacific Rise and compared it to similar datasets from a well-connected and moderately disturbed ecosystem (kelp forest) and an isolated and undisturbed ecosystem (atoll sandflat). Parasite richness within host species did not differ significantly between ecosystems, yet total parasite richness in the vent community was much lower due to the low number of predatory fish species. Contrary to expectation, the proportion of ILC parasite species was not lower at vents due to a high richness of trematodes, while other ILC parasite taxa were scarce (nematodes) or absent (cestodes). These results demonstrate the success of diverse parasite taxa in an extreme environment and reinforce the importance of host diversity and food web complexity in governing parasite diversity.
  • Article
    Effects of warming and fishing on Atlantic sea scallop (Placopecten magellanicus) size structure in the Mid-Atlantic rotationally closed areas
    (Oxford University Press, 2023-04-17) Zang, Zhengchen ; Ji, Rubao ; Hart, Deborah R. ; Jin, Di ; Chen, Changsheng ; Liu, Yonggang ; Davis, Cabell S.
    The Atlantic sea scallop supports one of the most lucrative fisheries on the Northeast U.S. shelf. Understanding the interannual variability of sea scallop size structure and associated drivers is critically important for projecting the response of population dynamics to climate change and designing coherent fishery management strategies. In this study, we constructed time series of sea scallop size structures in three rotationally closed areas in the Mid-Atlantic Bight (MAB) and decomposed their total variances using the variance partitioning method. The results suggested that the interannual variances in sea scallop size structures were associated more with thermal stress in regions shallower than 60 m but more with fishing mortality in regions deeper than 60 m. The percentages of small (large) size groups increased (decreased) with elevated thermal stress and fishing pressure. We adopted a scope for growth model to build a mechanistic link between temperature and sea scallop size. Model results suggested a gradual decrease in maximum shell height and habitat contraction under warming. This study quantified the relative contributions of thermal stress and fishing mortality to the variance of scallop size structure and discussed the need for adaptive management plans to mitigate potential socioeconomic impacts caused by size structure changes.
  • Article
    Toward a new era of coral reef monitoring
    (American Chemical Society, 2023-03-17) Apprill, Amy ; Girdhar, Yogesh ; Mooney, T. Aran ; Hansel, Colleen M. ; Long, Matthew H. ; Liu, Yaqin ; Zhang, W. Gordon ; Kapit, Jason ; Hughen, Konrad ; Coogan, Jeff ; Greene, Austin
    Coral reefs host some of the highest concentrations of biodiversity and economic value in the oceans, yet these ecosystems are under threat due to climate change and other human impacts. Reef monitoring is routinely used to help prioritize reefs for conservation and evaluate the success of intervention efforts. Reef status and health are most frequently characterized using diver-based surveys, but the inherent limitations of these methods mean there is a growing need for advanced, standardized, and automated reef techniques that capture the complex nature of the ecosystem. Here we draw on experiences from our own interdisciplinary research programs to describe advances in in situ diver-based and autonomous reef monitoring. We present our vision for integrating interdisciplinary measurements for select “case-study” reefs worldwide and for learning patterns within the biological, physical, and chemical reef components and their interactions. Ultimately, these efforts could support the development of a scalable and standardized suite of sensors that capture and relay key data to assist in categorizing reef health. This framework has the potential to provide stakeholders with the information necessary to assess reef health during an unprecedented time of reef change as well as restoration and intervention activities.
  • Article
    Estimating production cost for large-scale seaweed farms
    (Taylor and Francis, 2022-11-11) Kite-Powell, Hauke L. ; Ask, Erick ; Augyte, Simona ; Bailey, David ; Decker, Julie ; Goudey, Clifford A. ; Grebe, Gretchen ; Li, Yaoguang ; Lindell, Scott ; Manganelli, Domenic ; Marty-Rivera, Michael ; Ng, Crystal ; Roberson, Loretta ; Stekoll, Michael ; Umanzor, Schery ; Yarish, Charles
    Seaweed farming has the potential to produce feedstocks for many applications, including food, feeds, fertilizers, biostimulants, and biofuels. Seaweeds have advantages over land-based biomass in that they require no freshwater inputs and no allocation of arable land. To date, seaweed farming has not been practiced at scales relevant to meaningful biofuel production. Here we describe a techno-economic model of large-scale seaweed farms and its application to the cultivation of the cool temperate species Saccharina latissima (sugar kelp) and the tropical seaweed Eucheumatopsis isiformis. At farm scales of 1000 ha or more, our model suggests that farm gate production costs in waters up to 200 km from the onshore support base are likely to range between $200 and $300 per dry tonne. The model also suggests that production costs below $100 per dry tonne may be achievable in some settings, which would make these seaweeds economically competitive with land-based biofuel feedstocks. While encouraging, these model results and some assumptions on which they are based require further field validation.
  • Article
    Mesopelagic-epipelagic fish nexus in viability and feasibility of commercial-scale mesopelagic fisheries
    (Wiley, 2022-07-20) Kourantidou, Melina ; Jin, Di
    While considerable scientific uncertainties persist for mesopelagic ecosystems, the fishing industry has developed a great interest in commercial exploitation with improved technologies as part of their search for new sources of feed for fishmeal and fish oil for aquaculture, which will intensify with the planet's growing population. The multiple uncertainties surrounding the ecosystem structure and particularly the size of biomass, hinder a good understanding of the risks associated with large-scale exploitation, which is needed for a management framework for sustainable ocean uses. Despite concerns regarding irreversible losses triggered by commercial fishing, work exploring the vulnerability of mesopelagic fish to harvesting is largely missing. This study investigates the economic feasibility of mesopelagic fishing which is the primary driver for any possible future expansion. Using very limited information currently available, we conduct a high-level assessment focusing on key ecological and economic interactions and develop an initial understanding of the economic feasibility of commercial harvesting for mesopelagic fish in the coming years. We conduct simulations using a classical bioeconomic model that captures two species groups, mesopelagic and epipelagic fish, using a wide range of price and cost parameters. We analyze different scenarios for the economic profitability of the fishery in a regional fishery management context. The results of our study highlight the importance of better understanding key biological and ecological mechanisms and parameters which can in turn help inform policies aimed at protecting the mesopelagic.
  • Article
    Managing biological invasions: the cost of inaction
    (Springer, 2022-03-18) Ahmed, Danish A. ; Hudgins, Emma J. ; Cuthbert, Ross N. ; Kourantidou, Melina ; Diagne, Christophe ; Haubrock, Phillip J. ; Leung, Brian ; Liu, Chunlong ; Leroy, Boris ; Petrovskii, Sergei ; Beidas, Ayah ; Courchamp, Franck
    Ecological and socioeconomic impacts from biological invasions are rapidly escalating worldwide. While effective management underpins impact mitigation, such actions are often delayed, insufficient or entirely absent. Presently, management delays emanate from a lack of monetary rationale to invest at early invasion stages, which precludes effective prevention and eradication. Here, we provide such rationale by developing a conceptual model to quantify the cost of inaction, i.e., the additional expenditure due to delayed management, under varying time delays and management efficiencies. Further, we apply the model to management and damage cost data from a relatively data-rich genus (Aedes mosquitoes). Our model demonstrates that rapid management interventions following invasion drastically minimise costs. We also identify key points in time that differentiate among scenarios of timely, delayed and severely delayed management intervention. Any management action during the severely delayed phase results in substantial losses (>50% of the potential maximum loss). For Aedes spp., we estimate that the existing management delay of 55 years led to an additional total cost of approximately $ 4.57 billion (14% of the maximum cost), compared to a scenario with management action only seven years prior (< 1% of the maximum cost). Moreover, we estimate that in the absence of management action, long-term losses would have accumulated to US$ 32.31 billion, or more than seven times the observed inaction cost. These results highlight the need for more timely management of invasive alien species—either pre-invasion, or as soon as possible after detection—by demonstrating how early investments rapidly reduce long-term economic impacts.
  • Article
    The economic tradeoffs and ecological impacts associated with a potential mesopelagic fishery in the California Current
    (Ecological Society of America, 2022-02-21) Dowd, Sally ; Chapman, Melissa ; Koehn, Laura E. ; Hoagland, Porter
    The ocean's mesopelagic zone (200–1000 m) remains one of the most understudied parts of the ocean despite knowledge that mesopelagic fishes are highly abundant. Apex predators from the surface waters are known to consume these fishes, constituting an important ecological interaction. Some countries have begun exploring the potential harvest of mesopelagic fishes to supply fishmeal and fish oil markets due to the high fish abundance in the mesopelagic zone compared with overfished surface waters. This study explored the economic and ecological implications of a moratorium on the harvest of mesopelagic fishes such as lanternfish off the US West Coast, one of the few areas where such resources are managed. We adapted a bioeconomic decision model to examine the tradeoffs between the values gained from a hypothetical mesopelagic fishery with the potential values lost from declines in predators of mesopelagic fishes facing a reduced prey resource. The economic rationale for a moratorium on harvesting mesopelagics was sensitive both to ecological relationships and the scale of the nonmarket values attributed to noncommercial predators. Using a California Current-based ecological simulation model, we found that most modeled predators of mesopelagic fishes increased in biomass even under high mesopelagic harvest rates, but the changes (either increases or decreases) were small, with relatively few predators responding with more than a 10% change in their biomass. While the ecological simulations implied that a commercial mesopelagic fishery might not have large biomass impacts for many species in the California Current system, there is still a need to further explore the various roles of the mesopelagic zone in the ocean.
  • Article
    Inuit food insecurity as a consequence of fragmented marine resource management policies? Emerging lessons from Nunatsiavut
    (Arctic Institute of North America, 2022-01-28) Kourantidou, Melina ; Hoagland, Porter ; Bailey, Megan
    Historically, Inuit communities of the Arctic have relied significantly on the living marine resources of their coastal waters for nutrition, underpinning community cohesion and enhancing individual and collective well-being. Inadequate understanding of the conditions of coastal marine stocks and their dynamics, along with failed past fisheries management practices, now threatens secure access to these resources for food and nutrition. We examine the degree of integration of modern Canadian federal food and marine resource management policies, which heretofore have been unable to lessen food insecurity in the Arctic, suggesting that causes rather than symptoms need to be treated. Using evidence from Nunatsiavut, northern Labrador, we assess the limits to marine resource governance affecting access to traditionally important food sources. We explore the potential for both increased subsistence harvests and enhanced access to commercial fisheries in mitigating Inuit food insecurity, arguing for the relevance of expanded marine resource assessments, more focused fisheries management, and integration with policies designed to mitigate food insecurity. Crucially, the absence of methods for tracking changes in locally harvested marine resources threatens not only individual and household nutrition but also the social, economic, and cultural integrity of Inuit communities. We further describe the needs for monitoring and propose the use of indicators that capture the contributions of locally harvested marine resources to increased food security along with a framework that allows for utilizing local knowledge and observations. Relying on emerging lessons from research in Nunatsiavut, we build a foundation for a better understanding of both the political and institutional legacies that contribute to Labrador Inuit food insecurity and discuss how the deeper integration of food and marine resource management policies could help mitigate it.
  • Article
    Biological invasion costs reveal insufficient proactive management worldwide
    (Elsevier, 2022-05-01) Cuthbert, Ross N. ; Diagne, Christophe ; Hudgins, Emma J. ; Turbelin, Anna J. ; Ahmed, Danish A. ; Albert, Céline ; Bodey, Thomas W. ; Briski, Elizabeta ; Essl, Franz ; Haubrock, Phillip J. ; Gozlan, Rodolphe E. ; Kirichenko, Natalia ; Kourantidou, Melina ; Kramer, Andrew M. ; Courchamp, Franck
    The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs — 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1–2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management — particularly pre-invasion — and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
  • Article
    Pathways to justice, equity, diversity, and inclusion in marine science and conservation
    (Frontiers Media, 2021-12-23) Johri, Shaili ; Carnevale, Maria ; Porter, Lindsay ; Zivian, Anna ; Kourantidou, Melina ; Meyer, Erin L. ; Seevers, Jessica ; Skubel, Rachel A.
    Marine conservation sciences have traditionally been, and remain, non-diverse work environments with many barriers to justice, equity, diversity, and inclusion (JEDI). These barriers disproportionately affect entry of early career scientists and practitioners and limit the success of marine conservation professionals from under-represented, marginalized, and overburdened groups. These groups specifically include women, LGBTQ+, Black, Indigenous, and people of color (BIPOC). However, the issues also arise from the global North/South and East/West divide with under-representation of scientists from the South and East in the global marine conservation and science arena. Persisting inequities in conservation, along with a lack of inclusiveness and diversity, also limit opportunities for innovation, cross-cultural knowledge exchange, and effective implementation of conservation and management policies. As part of its mandate to increase diversity and promote inclusion of underrepresented groups, the Diversity and Inclusion committee of the Society for Conservation Biology-Marine Section (SCB Marine) organized a JEDI focus group at the Sixth International Marine Conservation Congress (IMCC6) which was held virtually. The focus group included a portion of the global cohort of IMCC6 attendees who identified issues affecting JEDI in marine conservation and explored pathways to address those issues. Therefore, the barriers and pathways identified here focus on issues pertinent to participants’ global regions and experiences. Several barriers to just, equitable, diverse, and inclusive conservation science and practice were identified. Examples included limited participation of under-represented minorities (URM) in research networks, editorial biases against URM, limited professional development and engagement opportunities for URM and non-English speakers, barriers to inclusion of women, LGBTQ+, and sensory impaired individuals, and financial barriers to inclusion of URM in all aspects of marine conservation and research. In the current policy brief, we explore these barriers, assess how they limit progress in marine conservation research and practice, and seek to identify initiatives for improvements. We expect the initiatives discussed here to advances practices rooted in principles of JEDI, within SCB Marine and, the broader conservation community. The recommendations and perspectives herein broadly apply to conservation science and practice, and are critical to effective and sustainable conservation and management outcomes.
  • Article
    Identifying economic costs and knowledge gaps of invasive aquatic crustaceans
    (Elsevier, 2021-12-31) Kouba, Antonín ; Oficialdegui, Francisco J. ; Cuthbert, Ross N. ; Kourantidou, Melina ; South, Josie ; Tricarico, Elena ; Gozlan, Rodolphe E. ; Courchamp, Franck ; Haubrock, Phillip J.
    Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans — crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans.
  • Other
    The ocean twilight zone’s role in climate change
    (Woods Hole Oceanographic Institution, 2022-02) Buesseler, Ken O. ; Jin, Di ; Kourantidou, Melina ; Levin, David S. ; Ramakrishna, Kilaparti ; Renaud, Philip
    The ocean twilight zone (more formally known as the mesopelagic zone) plays a fundamental role in global climate. It is the mid-ocean region roughly 100 to 1000 meters below the surface, encompassing a half-mile deep belt of water that spans more than two-thirds of our planet. The top of the ocean twilight zone only receives 1% of incident sunlight and the bottom level is void of sunlight. Life in the ocean twilight zone helps to transport billions of metric tons (gigatonnes) of carbon annually from the upper ocean into the deep sea, due in part to processes known as the biological carbon pump. Once carbon moves below roughly 1000 meters depth in the ocean, it can remain out of the atmosphere for centuries to millennia. Without the benefits of the biological carbon pump, the atmospheric CO 2 concentration would increase by approximately 200 ppm 1 which would significantly amplify the negative effects of climate change that the world is currently trying to curtail and reverse. Unfortunately, existing scientific knowledge about this vast zone of the ocean, such as how chemical elements flow through its living systems and the physical environment, is extremely limited, jeopardizing the efforts to improve climate predictions and to inform fisheries management and ocean policy development.
  • Article
    Sensitivity of sand lance to shifting prey and hydrography indicates forthcoming change to the northeast US shelf forage fish complex
    (Oxford University Press, 2021-01-26) Suca, Justin J. ; Wiley, David N. ; Silva, Tammy L. ; Robuck, Anna R. ; Richardson, David E. ; Glancy, Sarah G. ; Clancey, Emily ; Giandonato, Teresa ; Solow, Andrew R. ; Thompson, Michael A. ; Hong, Peter ; Baumann, Hannes ; Kaufman, Les ; Llopiz, Joel K.
    Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century.
  • Presentation
    Workshop on the socio-economic effects of marine and fresh water harmful algal blooms in the United States
    (Woods Hole Oceanographic Institution, 2021-03-01) Suddleson, Marc ; Hoagland, Porter
    The US National Office for Harmful Algal Blooms at the Woods Hole Oceanographic Institution (WHOI) and the NOAA National Centers for Coastal Ocean Science (NCCOS) held a virtual workshop comprising four sessions between July 27 and August 5, 2020. This report summarizes the workshop proceedings and presents recommendations developed by participants during the discussion. The recommendations advance an assessment framework and a national research agenda that will lead to comprehensive evaluations of the socio-economic effects of harmful algal blooms (HABs) in fresh water (primarily the Great Lakes) and marine waters of the United States.
  • Article
    Twilight zone observation network: a distributed observation network for sustained, real-time interrogation of the ocean’s twilight zone
    (Marine Technology Society, 2021-05-01) Thorrold, Simon R. ; Adams, Allan ; Bucklin, Ann ; Buesseler, Ken O. ; Fischer, Godi ; Govindarajan, Annette F. ; Hoagland, Porter ; Di, Jin ; Lavery, Andone C. ; Llopez, Joel ; Madin, Laurence P. ; Omand, Melissa M. ; Renaud, Philip ; Sosik, Heidi M. ; Wiebe, Peter ; Yoerger, Dana R. ; Zhang, Weifeng G.
    The ocean's twilight zone (TZ) is a vast, globe-spanning region of the ocean. Home to myriad fishes and invertebrates, mid-water fishes alone may constitute 10 times more biomass than all current ocean wild-caught fisheries combined. Life in the TZ supports ocean food webs and plays a critical role in carbon capture and sequestration. Yet the ecological roles that mesopelagic animals play in the ocean remain enigmatic. This knowledge gap has stymied efforts to determine the effects that extraction of mesopelagic biomass by industrial fisheries, or alterations due to climate shifts, may have on ecosystem services provided by the open ocean. We propose to develop a scalable, distributed observation network to provide sustained interrogation of the TZ in the northwest Atlantic. The network will leverage a “tool-chest” of emerging and enabling technologies including autonomous, unmanned surface and underwater vehicles and swarms of low-cost “smart” floats. Connectivity among in-water assets will allow rapid assimilation of data streams to inform adaptive sampling efforts. The TZ observation network will demonstrate a bold new step towards the goal of continuously observing vast regions of the deep ocean, significantly improving TZ biomass estimates and understanding of the TZ's role in supporting ocean food webs and sequestering carbon.
  • Article
    Thermodynamic feasibility of shipboard conversion of marine plastics to blue diesel for self-powered ocean cleanup
    (National Academy of Sciences, 2021-11-16) Belden, Elizabeth R. ; Kazantzis, Nikolaos K. ; Reddy, Christopher M. ; Kite-Powell, Hauke L. ; Timko, Michael T. ; Italiani, Eduardo ; Herschbach, Dudley R.
    Collecting and removing ocean plastics can mitigate their environmental impacts; however, ocean cleanup will be a complex and energy-intensive operation that has not been fully evaluated. This work examines the thermodynamic feasibility and subsequent implications of hydrothermally converting this waste into a fuel to enable self-powered cleanup. A comprehensive probabilistic exergy analysis demonstrates that hydrothermal liquefaction has potential to generate sufficient energy to power both the process and the ship performing the cleanup. Self-powered cleanup reduces the number of roundtrips to port of a waste-laden ship, eliminating the need for fossil fuel use for most plastic concentrations. Several cleanup scenarios are modeled for the Great Pacific Garbage Patch (GPGP), corresponding to 230 t to 11,500 t of plastic removed yearly; the range corresponds to uncertainty in the surface concentration of plastics in the GPGP. Estimated cleanup times depends mainly on the number of booms that can be deployed in the GPGP without sacrificing collection efficiency. Self-powered cleanup may be a viable approach for removal of plastics from the ocean, and gaps in our understanding of GPGP characteristics should be addressed to reduce uncertainty.
  • Article
    Economic costs of invasive alien species across Europe
    (Pensoft Publishers, 2021-06-29) Haubrock, Phillip J. ; Turbelin, Anna J. ; Cuthbert, Ross N. ; Novoa, Ana ; Taylor, Nigel G. ; Angulo, Elena ; Ballesteros-Mejia, Liliana ; Bodey, Thomas W. ; Capinha, César ; Diagne, Christophe ; Essl, Franz ; Golivets, Marina ; Kirichenko, Natalia ; Kourantidou, Melina ; Leroy, Boris ; Renault, David ; Verbrugge, Laura N.H. ; Courchamp, Franck
    Biological invasions continue to threaten the stability of ecosystems and societies that are dependent on their services. Whilst the ecological impacts of invasive alien species (IAS) have been widely reported in recent decades, there remains a paucity of information concerning their economic impacts. Europe has strong trade and transport links with the rest of the world, facilitating hundreds of IAS incursions, and largely centralised decision-making frameworks. The present study is the first comprehensive and detailed effort that quantifies the costs of IAS collectively across European countries and examines temporal trends in these data. In addition, the distributions of costs across countries, socioeconomic sectors and taxonomic groups are examined, as are socio-economic correlates of management and damage costs. Total costs of IAS in Europe summed to US$140.20 billion (or €116.61 billion) between 1960 and 2020, with the majority (60%) being damage-related and impacting multiple sectors. Costs were also geographically widespread but dominated by impacts in large western and central European countries, i.e. the UK, Spain, France, and Germany. Human population size, land area, GDP, and tourism were significant predictors of invasion costs, with management costs additionally predicted by numbers of introduced species, research effort and trade. Temporally, invasion costs have increased exponentially through time, with up to US$23.58 billion (€19.64 billion) in 2013, and US$139.56 billion (€116.24 billion) in impacts extrapolated in 2020. Importantly, although these costs are substantial, there remain knowledge gaps on several geographic and taxonomic scales, indicating that these costs are severely underestimated. We, thus, urge increased and improved cost reporting for economic impacts of IAS and coordinated international action to prevent further spread and mitigate impacts of IAS populations.
  • Article
    Economic costs of invasive alien species in the Mediterranean basin
    (Pensoft Publishers, 2021-07-29) Kourantidou, Melina ; Cuthbert, Ross N. ; Haubrock, Phillip J. ; Novoa, Ana ; Taylor, Nigel G. ; Leroy, Boris ; Capinha, César ; Renault, David ; Angulo, Elena ; Diagne, Christophe ; Courchamp, Franck
    nvasive alien species (IAS) negatively impact the environment and undermine human well-being, often resulting in considerable economic costs. The Mediterranean basin is a culturally, socially and economically diverse region, harbouring many IAS that threaten economic and societal integrity in multiple ways. This paper is the first attempt to collectively quantify the reported economic costs of IAS in the Mediterranean basin, across a range of taxonomic, temporal and spatial descriptors. We identify correlates of costs from invasion damages and management expenditures among key socioeconomic variables, and determine network structures that link countries and invasive taxonomic groups. The total reported invasion costs in the Mediterranean basin amounted to $27.3 billion, or $3.6 billion when only realised costs were considered, and were found to have occurred over the last three decades. Our understanding of costs of invasions in the Mediterranean was largely limited to a few, primarily western European countries and to terrestrial ecosystems, despite the known presence of numerous high-impact aquatic invasive taxa. The vast majority of costs were attributed to damages or losses from invasions ($25.2 billion) and were mostly driven by France, Spain and to a lesser extent Italy and Libya, with significantly fewer costs attributed to management expenditure ($1.7 billion). Overall, invasion costs increased through time, with average annual costs between 1990 and 2017 estimated at $975.5 million. The lack of information from a large proportion of Mediterranean countries, reflected in the spatial and taxonomic connectivity analysis and the relationship of costs with socioeconomic variables, highlights the limits of the available data and the research effort needed to improve a collective understanding of the different facets of the costs of biological invasions. Our analysis of the reported costs associated with invasions in the Mediterranean sheds light on key knowledge gaps and provides a baseline for a Mediterranean-centric approach towards building policies and designing coordinated responses. In turn, these could help reach socially desirable outcomes and efficient use of resources invested in invasive species research and management.
  • Article
    Risk averse choices of managed beach widths under environmental uncertainty
    (Wiley, 2021-07-26) Jin, Di ; Hoagland, Porter ; Ashton, Andrew D.
    Applying a theoretical geo-economic approach, we examined key factors affecting decisions about the choice of beach width when eroded coastal beaches are being nourished (i.e., when fill is placed to widen a beach). Within this geo-economic framework, optimal beach width is positively related to its values for hazard protection and recreation and negatively related to nourishment costs and the discount rate. Using a dynamic modeling framework, we investigated the time paths of beach width and nourishment that maximized net present value under an accelerating sea level. We then analyzed how environmental uncertainty about expected future beach width, arising from natural shoreline dynamics, intermittent large storms, or sea-level rise, leads to economic choices favoring narrower beaches. Risk aversion can affect a coastal property owner's choice of beach width in contradictory ways: the expected benefits of hazard protection must be balanced against the expected costs of repeated nourishment actions.